
Internet & World Wide Web
How to Program, 5/e

Copyright © Pearson, Inc. 2013. All Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The Internet and web programming technologies
you’ll learn in this book are designed to be
portable, allowing you to design web pages and
applications that run across an enormous range
of Internet-enabled devices.

 Client-side programming technologies are used
to build web pages and applications that are run
on the client (i.e., in the browser on the user’s
device).

 Server-side programming—the applications that
respond to requests from client-side web
browsers, such as searching the Internet,
checking your bank-account balance, ordering a
book from Amazon, bidding on an eBay auction
and ordering concert tickets.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Read the Preface and the Before You Begin
section to learn about the book’s coverage
and how to set up your computer to run the
hundreds of code examples.

 The code is available at
www.deitel.com/books/iw3htp5 and
www.pearsonhighered.com/deitel.

 Use the source code to run every program
and script as you study it.

 Try each example in multiple browsers.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 If you’re interested in smartphones and tablet
computers, run the examples in your
browsers on iPhones, iPads, Android
smartphones and tablets, and others.

 The technologies covered in this book and
browser support for them are evolving
rapidly. Not every feature of every page we
build will render properly in every browser.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Moore’s Law
 Every year or two, the capacities of computers have

approximately doubled inexpensively.
 This remarkable trend often is called Moore’s Law.
 Moore’s Law and related observations apply especially to

the amount of memory that computers have for programs,
the amount of secondary storage (such as disk storage)
they have to hold programs and data over longer periods
of time, and their processor speeds—the speeds at which
computers execute their programs (i.e., do their work).

 Similar growth has occurred in the communications field,
in which costs have plummeted as enormous demand for
communications bandwidth (i.e., information-carrying
capacity) has attracted intense competition.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figures 1.1–1.4 provide a few examples of
how computers and the Internet are being
used in industry and research.

 Figure 1.1 lists two examples of how
computers and the Internet are being used to
improve health care.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 1.2 provides a sample of some of the
exciting ways in which computers and the
Internet are being used for social good.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 1.3 gives some examples of how
computers and the Internet provide the
infrastructure to communicate, navigate,
collaborate and more.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 1.4 lists a few of the exciting ways in
which computers and the Internet are used in
entertainment.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

HTML5
 HTML (HyperText Markup Language) is a special

type of computer language called a markup
language designed to specify the content and
structure of web pages (also called documents) in a
portable manner.

 HTML5, now under development, is the emerging
version of HTML.

 HTML enables you to create content that will render
appropriately across the extraordinary range of
devices connected to the Internet—including
smartphones, tablet computers, notebook
computers, desktop computers, special-purpose
devices such as large-screen displays at concert
arenas and sports stadiums, and more.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 A “stricter” version of HTML called XHTML
(Extensible HyperText Markup Language),
which is based on XML (eXtensible Markup
Language), is still used frequently today.

 Many of the server-side technologies we
cover later in the book produce web pages as
XHTML documents, by default, but the trend
is clearly to HTML5.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Cascading Style Sheets (CSS)
 Although HTML5 provides some capabilities for controlling a

document’s presentation, it’s better not to mix presentation
with content.

 Cascading Style Sheets (CSS) are used to specify the
presentation, or styling, of elements on a web page (e.g.,
fonts, spacing, sizes, colors, positioning).

 CSS was designed to style portable web pages independently
of their content and structure.

 By separating page styling from page content and structure,
you can easily change the look and feel of the pages on an
entire website, or a portion of a website, simply by swapping
out one style sheet for another.

 CSS3 is the current version of CSS under development.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

JavaScript
 JavaScript helps you build dynamic web pages (i.e., pages that

can be modified “on the fly” in response to events, such as
user input, time changes and more) and computer
applications.

 It enables you to do the client-side programming of web
applications.

 JavaScript was created by Netscape.
 Both Netscape and Microsoft have been instrumental in the

standardization of JavaScript by ECMA International (formerly
the European Computer Manufacturers Association) as
ECMAScript.

 ECMAScript 5, the latest version of the standard, corresponds
to the version of JavaScript we use in this book.

 JavaScript is a portable scripting language. Programs written
in JavaScript can run in web browsers across a wide range of
devices.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Web Browsers and Web-Browser Portability

 Ensuring a consistent look and feel on client-
side browsers is one of the great challenges
of developing web-based applications.

 Currently, a standard does not exist to which
software vendors must adhere when creating
web browsers.

 Although browsers share a common set of
features, each browser might render pages
differently.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Browsers are available in many versions and
on many different platforms (Microsoft
Windows, Apple Macintosh, Linux, UNIX, etc.).

 Vendors add features to each new version
that sometimes result in cross-platform
incompatibility issues.

 It’s difficult to develop web pages that render
correctly on all versions of each browser.

 All of the code examples in the book were
tested in the five most popular desktop
browsers and the two most popular mobile
browsers (Fig. 1.5).

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Support for HTML5, CSS3 and JavaScript features varies by
browser.

 The HTML5 Test website (http://html5test.com/) scores
each browser based on its support for the latest features of
these evolving standards.

 Figure 1.5 lists the five desktop browsers we use in reverse
order of their HTML5 Test scores from most compliant to
least compliant at the time of this writing.

 You can also check sites such as http://caniuse.com/ for a
list of features covered by each browser.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

jQuery
 jQuery (jQuery.org) is currently the most

popular of hundreds of JavaScript libraries.
◦ www.activoinc.com/blog/2008/11/03/jquery-emerges-

as-most-popular-javascript-library-for-web-
development/.

 jQuery simplifies JavaScript programming by
making it easier to manipulate a web page’s
elements and interact with servers in a portable
manner across various web browsers.

 It provides a library of custom graphical user
interface (GUI) controls (beyond the basic GUI
controls provided by HTML5) that can be used to
enhance the look and feel of your web pages.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Validating Your HTML5, CSS3 and JavaScript
Code

 You must use proper HTML5, CSS3 and
JavaScript syntax to ensure that browsers
process your documents properly.

 Figure 1.6 lists the validators we used to
validate the code in this book. Where
possible, we eliminated validation errors.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Browse the web pages in Fig. 1.7 to get a
sense of some of the things you’ll be able to
create using the technologies you’ll learn in
this book, including HTML5, CSS3, JavaScript,
canvas and jQuery.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The Internet—a global network of computers—was made
possible by the convergence of computing and
communications technologies.

 In the late 1960s, ARPA (the Advanced Research Projects
Agency) rolled out blueprints for networking the main
computer systems of about a dozen ARPA-funded universities
and research institutions.

 They were to be connected with communications lines
operating at a then-stunning 56 Kbps (i.e., 56,000 bits per
second)—this at a time when most people (of the few who
could) were connecting over telephone lines to computers at
a rate of 110 bits per second.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 A bit (short for “binary digit”) is the smallest data
item in a computer; it can assume the value 0 or
1.

 ARPA proceeded to implement the ARPANET,
which eventually evolved into today’s Internet.

 Rather than enabling researchers to share each
other’s computers, it rapidly became clear that
communicating quickly and easily via electronic
mail was the key early benefit of the ARPANET.

 This is true even today on the Internet, which
facilitates communications of all kinds among
the world’s Internet users.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Packet Switching
 One of the primary goals for ARPANET was to allow

multiple users to send and receive information
simultaneously over the same communications paths
(e.g., phone lines).

 The network operated with a technique called packet
switching, in which digital data was sent in small
bundles called packets.

 The packets contained address, error-control and
sequencing information.

 The address information allowed packets to be
routed to their destinations.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The sequencing information helped in reassembling
the packets—which, because of complex routing
mechanisms, could actually arrive out of order—into
their original order for presentation to the recipient.

 Packets from different senders were intermixed on
the same lines to efficiently use the available
bandwidth.

 The network was designed to operate without
centralized control.

 If a portion of the network failed, the remaining
working portions would still route packets from
senders to receivers over alternative paths for
reliability.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

TCP/IP
 The protocol (i.e., set of rules) for communicating over the

ARPANET became known as TCP—the Transmission
Control Protocol.

 TCP ensured that messages were properly routed from
sender to receiver and that they arrived intact.

 As the Internet evolved, organizations worldwide were
implementing their own networks for both
intraorganization (i.e., within the organization) and
interorganization (i.e., between organizations)
communications.

 One challenge was to get these different networks to
communicate.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 ARPA accomplished this with the development of IP—the
Internet Protocol, truly creating a network of networks, the
current architecture of the Internet.

 The combined set of protocols is now commonly called
TCP/IP.

 Each computer on the Internet has a unique IP address.
 The current IP standard, Internet Protocol version 4 (IPv4),

has been in use since 1984 and will soon run out of
possible addresses.

 IPv6 is just starting to be deployed. It features enhanced
security and a new addressing scheme, hugely expanding
the number of IP addresses available so that we will not
run out of IP addresses in the forseeable future.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Explosive Growth
 Initially, Internet use was limited to

universities and research institutions; then
the military began using it intensively.

 Eventually, the government decided to allow
access to the Internet for commercial
purposes.

 Bandwidth (i.e., the information-carrying
capacity) on the Internet’s is increasing
rapidly as costs dramatically decline.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

World Wide Web, HTML, HTTP
 The World Wide Web allows computer users to execute web-based applications

and to locate and view multimedia-based documents on almost any subject over
the Internet.

 In 1989, Tim Berners-Lee of CERN (the European Organization for Nuclear
Research) began to develop a technology for sharing information via hyperlinked
text documents.

 Berners-Lee called his invention the HyperText Markup Language (HTML).
 He also wrote communication protocols to form the backbone of his new

information system, which he called the World Wide Web.
 In particular, he wrote the Hypertext Transfer Protocol (HTTP)—a communications

protocol used to send information over the web.
 The URL (Uniform Resource Locator) specifies the address (i.e., location) of the

web page displayed in the browser window.
 Each web page on the Internet is associated with a unique URL.

 URLs usually begin with http://.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

HTTPS
 URLs of websites that handle private information,

such as credit card numbers, often begin with
https://, the abbreviation for Hypertext Transfer
Protocol Secure (HTTPS).

 HTTPS is the standard for transferring encrypted
data on the web.

 It combines HTTP with the Secure Sockets Layer (SSL)
and the more recent Transport Layer Security (TLS)
cryptographic schemes for securing communications
and identification information over the web.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Mosaic, Netscape, Emergence of Web 2.0
 Web use exploded with the availability in 1993 of the

Mosaic browser, which featured a user-friendly graphical
interface.

 Marc Andreessen, whose team at the National Center for
Supercomputing Applications (NCSA) developed Mosaic,
went on to found Netscape, the company that many people
credit with igniting the explosive Internet economy of the
late 1990s.

 But the “dot com” economic bust brought hard times in the
early 2000s.

 The resurgence that began in 2004 or so has been named
Web 2.0.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 In its simplest form, a web page is nothing more than an
HTML (HyperText Markup Language) document (with the
extension .html or .htm) that describes to a web browser
the document’s content and structure.
Hyperlinks

 HTML documents normally contain hyperlinks, which,
when clicked, load a specified web document.

 Both images and text may be hyperlinked.
 When the user clicks a hyperlink, a web server locates the

requested web page and sends it to the user’s web
browser.

 Similarly, the user can type the address of a web page into
the browser’s address field and press Enter to view the
specified page.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Hyperlinks can reference other web pages, e-mail
addresses, files and more.

 If a hyperlink’s URL is in the form
mailto:emailAddress, clicking the link loads
your default e-mail program and opens a
message window addressed to the specified e-
mail address.

 If a hyperlink references a file that the browser is
incapable of displaying, the browser prepares to
download the file, and generally prompts the
user for information about how the file should be
stored.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

URIs and URLs
 URIs (Uniform Resource Identifiers) identify resources

on the Internet.
 URIs that start with http:// are called URLs (Uniform

Resource Locators).
Parts of a URL
 A URL contains information that directs a browser to

the resource that the user wishes to access.
 Web servers make such resources available to web

clients.
 Popular web servers include Apache’s HTTP Server

and Microsoft’s Internet Information Services (IIS).

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Let’s examine the components of the URL
 http://www.deitel.com/books/downloads.html

 The text http:// indicates that the HyperText Transfer Protocol
(HTTP) should be used to obtain the resource.

 Next in the URL is the server’s fully qualified hostname (for
example, www.deitel.com)—the name of the web-server
computer on which the resource resides.

 This computer is referred to as the host, because it houses and
maintains resources.

 The hostname www.deitel.com is translated into an IP (Internet
Protocol) address—a numerical value that uniquely identifies the
server on the Internet.

 An Internet Domain Name System (DNS) server maintains a
database of hostnames and their corresponding IP addresses and
performs the translations automatically.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The remainder of the URL (/books/downloads.html)
specifies the resource’s location (/books) and name
(downloads.html) on the web server.

 The location could represent an actual directory on the
web server’s file system. For security reasons, however,
the location is typically a virtual directory.

 The web server translates the virtual directory into a real
location on the server, thus hiding the resource’s true
location.

Making a Request and Receiving a Response
 Figure 1.8 shows a web browser sending a request to a

web server.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 In Fig. 1.8, the web browser sends an HTTP request
to the server. The request (in its simplest form) is

 GET /books/downloads.html HTTP/1.1

 The word GET is an HTTP method indicating that the
client wishes to obtain a resource from the server.

 The remainder of the request provides the path name
of the resource (e.g., an HTML5 document) and the
protocol’s name and version number (HTTP/1.1).

 The client’s request also contains some required and
optional headers.

 Figure 1.9 shows the web server responding to a
request.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The server first sends a line of text that indicates the HTTP
version, followed by a numeric code and a phrase describing the
status of the transaction. For example,

 HTTP/1.1 200 OK

 indicates success, whereas
 HTTP/1.1 404 Not found

 informs the client that the web server could not locate the
requested resource.

HTTP Headers
 Next, the server sends one or more HTTP headers, which provide

additional information about the data that will be sent.
 In this case, the server is sending an HTML5 text document, so

one HTTP header for this example would read:
 Content-type: text/html

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The information provided in this header specifies the
Multipurpose Internet Mail Extensions (MIME) type of the
content that the server is transmitting to the browser.

 The MIME standard specifies data formats, which programs
can use to interpret data correctly.

 For example, the MIME type text/plain indicates that the
sent information is text that can be displayed directly.

 Similarly, the MIME type image/jpeg indicates that the
content is a JPEG image.

 When the browser receives this MIME type, it attempts to
display the image.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The header or set of headers is followed by a
blank line, which indicates to the client browser
that the server is finished sending HTTP headers.

 Finally, the server sends the contents of the
requested document (downloads.html).

 The client-side browser then renders (or
displays) the document, which may involve
additional HTTP requests to obtain associated
CSS and images.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

HTTP get and post Requests
 The two most common HTTP request types (also known as request

methods) are get and post.
 A get request typically gets (or retrieves) information from a server,

such as an HTML document, an image or search results based on a user-
submitted search term.

 A post request typically posts (or sends) data to a server.
 Common uses of post requests are to send form data or documents to a

server.
 An HTTP request often posts data to a server-side form handler that

processes the data.
 For example, when a user performs a search or participates in a web-

based survey, the web server receives the information specified in the
HTML form as part of the request. Get requests and post requests can
both be used to send data to a web server, but each request type sends
the information differently.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 A get request appends data to the URL, e.g.,
www.google.com/search?q=deitel.

 In this case search is the name of Google’s server-side form handler, q is the
name of a variable in Google’s search form and deitel is the search term.

 The ? in the preceding URL separates the query string from the rest of the URL in a
request.

 A name/value pair is passed to the server with the name and the value separated
by an equals sign (=).

 If more than one name/value pair is submitted, each pair is separated by an
ampersand (&).

 The server uses data passed in a query string to retrieve an appropriate resource
from the server.

 The server then sends a response to the client. A get request may be initiated by
submitting an HTML form whose method attribute is set to "get", or by typing the
URL (possibly containing a query string) directly into the browser’s address bar.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 A post request sends form data as part of the HTTP message,
not as part of the URL.

 A get request typically limits the query string (i.e., everything to
the right of the ?) to a specific number of characters, so it’s
often necessary to send large amounts of information using the
post method.

 The post method is also sometimes preferred because it hides
the submitted data from the user by embedding it in an HTTP
message.

 If a form submits several hidden input values along with user-
submitted data, the post method might generate a URL like
www.searchengine.com/search.

 The form data still reaches the server and is processed in a
similar fashion to a get request, but the user does not see the
exact information sent.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Client-Side Caching
 Browsers often cache (save on disk) recently viewed web pages for quick

reloading.
 If there are no changes between the version stored in the cache and the

current version on the web, this speeds up your browsing experience.
 An HTTP response can indicate the length of time for which the content

remains “fresh.”
 If this amount of time has not been reached, the browser can avoid

another request to the server. If not, the browser loads the document
from the cache.

 Similarly, there’s also the “not modified” HTTP response, indicating that
the file content has not changed since it was last requested (which is
information that’s send in the request).

 Browsers typically do not cache the server’s response to a post request,
because the next post might not return the same result.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Web-based applications are often multitier
applications (sometimes referred to as n-tier
applications) that divide functionality into
separate tiers (i.e., logical groupings of
functionality).

 Figure 1.10 presents the basic structure of a
three-tier web-based application.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The bottom tier (also called the data tier or the information tier)
maintains the application’s data.

 This tier typically stores data in a relational database management
system (RDBMS).

 The middle tier implements business logic, controller logic and
presentation logic to control interactions between the application’s
clients and its data.

 The middle tier acts as an intermediary between data in the information
tier and the application’s clients.

 The middle-tier controller logic processes client requests (such as
requests to view a product catalog) and retrieves data from the
database.

 The middle-tier presentation logic then processes data from the
information tier and presents the content to the client.

 Web applications typically present data to clients as HTML documents.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Business logic in the middle tier enforces business rules and
ensures that data is reliable before the application updates a
database or presents data to users.

 Business rules dictate how clients access data and how
applications process data.

 The top tier, or client tier, is the application’s user interface,
which gathers input and displays output.

 Users interact directly with the application through the user
interface, which is typically a web browser or a mobile device.

 In response to user actions (e.g., clicking a hyperlink), the client
tier interacts with the middle tier to make requests and to
retrieve data from the information tier.

 The client tier then displays the data retrieved for the user.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Client-side scripting with JavaScript can be used to validate user
input, to interact with the browser, to enhance web pages, and to
add client/server communication between a browser and a web
server.

 Client-side scripting does have limitations, such as browser
dependency; the browser or scripting host must support the
scripting language and capabilities.

 Scripts are restricted from arbitrarily accessing the local
hardware and file system for security reasons.

 Another issue is that client-side scripts can be viewed by the
client by using the browser’s source-viewing capability.

 Sensitive information, such as passwords or other personally
identifiable data, should not be on the client.

 All client-side data validation should be mirrored on the server.
Also, placing certain operations in JavaScript on the client can
open web applications to security issues.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Programmers have more flexibility with server-side scripts,
which often generate custom responses for clients.

 For example, a client might connect to an airline’s web server
and request a list of flights from Boston to San Francisco
between April 19 and May 5. The server queries the database,
dynamically generates an HTML document containing the flight
list and sends the document to the client. This technology allows
clients to obtain the most current flight information from the
database by connecting to an airline’s web server.

 Server-side scripting languages have a wider range of
programmatic capabilities than their client-side equivalents.

 Server-side scripts also have access to server-side software that
extends server functionality—Microsoft web servers use ISAPI
(Internet Server Application Program Interface) extensions and
Apache HTTP Servers use modules.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 In October 1994, Tim Berners-Lee founded an organization—the
World Wide Web Consortium (W3C)—devoted to developing
nonproprietary, interoperable technologies for the World Wide
Web.

 One of the W3C’s primary goals is to make the web universally
accessible—regardless of disability, language or culture.

 The W3C is also a standards organization.
 Web technologies standardized by the W3C are called

Recommendations.
 Current and forthcoming W3C Recommendations include the

HyperText Markup Language 5 (HTML5), Cascading Style Sheets
3 (CSS3) and the Extensible Markup Language (XML).

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 In 2003 there was a noticeable shift in how people
and businesses were using the web and developing
web-based applications.

 The term Web 2.0 was coined by Dale Dougherty of
O’Reilly Media in 2003 to describe this trend.
◦ T. OReilly, ôWhat is Web 2.0: Design Patterns and Business

Models for the Next Generation of Software.ö September
2005
<http://www.oreillynet.com/pub/a/oreilly/tim/news/2005
/09/30/what-is-web-20.html?page=1>.

 Generally, Web 2.0 companies use the web as a
platform to create collaborative, community-based
sites (e.g., social networking sites, blogs, wikis).

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Web 1.0 versus Web 2.0
 Web 1.0 (the state of the web through the 1990s and early

2000s) was focused on a relatively small number of
companies and advertisers producing content for users to
access (some people called it the “brochure web”).

 Web 2.0 involves the users—not only do they often create
content, but they help organize it, share it, remix it,
critique it, update it, etc.

 One way to look at Web 1.0 is as a lecture, a small
number of professors informing a large audience of
students. In comparison, Web 2.0 is a conversation, with
everyone having the opportunity to speak and share views.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Architecture of Participation
 Web 2.0 embraces an architecture of participation—a design that

encourages user interaction and community contributions.
 The architecture of participation has influenced software

development as well.
 Opensource software is available for anyone to use and modify

with few or no restrictions (we’ll say more about open source in
Section 1.12).

 Using collective intelligence—the concept that a large diverse
group of people will create smart ideas—communities
collaborate to develop software that many people believe is
better and more robust than proprietary software.

 Rich Internet Applications (RIAs) are being developed using
technologies (such as Ajax) that have the look and feel of
desktop software, enhancing a user’s overall experience.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Search Engines and Social Media
 The way we find the information on these sites is

also changing—people are tagging (i.e., labeling)
web content by subject or keyword in a way that
helps anyone locate information more effectively.
◦ Semantic Web

 In the future, computers will learn to understand
the meaning of the data on the web—the
beginnings of the Semantic Web are already
appearing.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Google
 In 1996, Stanford computer science Ph.D. candidates

Larry Page and Sergey Brin began collaborating on a
new search engine.

 In 1997, they chose the name Google—a play on the
mathematical term googol, a quantity represented by
the number “one” followed by 100 “zeros” (or 10100)—
a staggeringly large number.

 Google’s ability to return extremely accurate search
results quickly helped it become the most widely
used search engine and one of the most popular
websites in the world.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Web Services and Mashups
 We include in this book a substantial

treatment of web services and introduce the
applications-development methodology of
mashups, in which you can rapidly develop
powerful and intriguing applications by
combining (often free) complementary web
services and other forms of information feeds
(Fig. 1.11).

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Web services, inexpensive computers, abundant
high-speed Internet access, open source
software and many other elements have inspired
new, exciting, lightweight business models that
people can launch with only a small investment.

 Some types of websites with rich and robust
functionality that might have required hundreds
of thousands or even millions of dollars to build
in the 1990s can now be built for nominal sums.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Ajax
 Ajax is one of the premier Web 2.0 software

technologies (Fig. 1.12).
 Ajax helps Internet-based applications

perform like desktop applications—a difficult
task, given that such applications suffer
transmission delays as data is shuttled back
and forth between your computer and servers
on the Internet.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Social Applications

 Figure 1.13 discusses a few of the social
applications that are making an impact.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Data items processed by computers form a data
hierarchy that becomes larger and more complex
in structure as we progress from bits to
characters to fields, and so on.

 Figure 1.14 illustrates a portion of the data
hierarchy.

 Figure 1.15 summarizes the data hierarchy’s
levels.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Operating systems are software systems that make using
computers more convenient for users, application developers
and system administrators.

 Operating systems provide services that allow each application to
execute safely, efficiently and concurrently (i.e., in parallel) with
other applications.

 The software that contains the core components of the operating
system is called the kernel.

 Popular desktop operating systems include Linux, Windows 7
and Mac OS X.

 Popular mobile operating systems used in smartphones and
tablets include Google’s Android, Apple’s iOS (for iPhone, iPad
and iPod Touch devices), BlackBerry OS and Windows Phone 7.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 In this section we discuss two of the popular desktop operating
systems—the proprietary Windows operating system and the
open source Linux operating system.

Windows—A Proprietary Operating System
 In the mid-1980s, Microsoft developed the Windows operating

system, consisting of a graphical user interface built on top of
DOS—an enormously popular personal-computer operating
system of the time that users interacted with by typing
commands.

 Windows borrowed from many concepts (such as icons, menus
and windows) developed by Xerox PARC and popularized by early
Apple Macintosh operating systems.

 Windows is a proprietary operating system—it’s controlled by
Microsoft exclusively.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Linux—An Open-Source Operating System
 The Linux operating system is perhaps the greatest success of the open-

source movement.
 Open-source software departs from the proprietary software

development style that dominated software’s early years.
 With open-source development, individuals and companies contribute

their efforts in developing, maintaining and evolving software in
exchange for the right to use that software for their own purposes,
typically at no charge.

 Rapid improvements to computing and communications, decreasing
costs and open-source software have made it much easier and more
economical to create a software-based business now than just a decade
ago.

 A great example is Facebook, which was launched from a college dorm
room and built with open-source software.
◦ developers.facebook.com/opensource/.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The Linux kernel is the core of the most popular open-
source, freely distributed, full-featured operating system.

 It’s developed by a loosely organized team of volunteers
and is popular in servers, personal computers and
embedded systems.

 Unlike that of proprietary operating systems like
Microsoft’s Windows and Apple’s Mac OS X, Linux source
code (the program code) is available to the public for
examination and modification and is free to download and
install.

 Linux has become extremely popular on servers and in
embedded systems, such as Google’s Android-based
smartphones.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Two of the most popular mobile operating
systems are Apple’s iOS and Google’s Android.

 Apple’s proprietary iPhone operating system, iOS,
is derived from Apple’s Mac OS X and is used in
the iPhone, iPad and iPod Touch devices.

 Android—the fastest growing mobile and
smartphone operating system—is based on the
Linux kernel and Java.

 One benefit of developing Android apps is the
openness of the platform. The operating system
is open source and free.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Programmers write instructions in various programming
languages, some directly understandable by computers and
others requiring intermediate translation steps.

 Any computer can directly understand only its own machine
language, defined by its hardware design.

 Machine languages generally consist of numbers (ultimately
reduced to 1s and 0s). Such languages are cumbersome for
humans.

 Programming in machine language—the numbers that computers
could directly understand—was simply too slow and tedious for
most programmers.

 Instead, they began using Englishlike abbreviations to represent
elementary operations.

 These abbreviations formed the basis of assembly languages.
 Translator programs called assemblers were developed to

convert assembly-language programs to machine language.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Although assembly-language code is clearer to humans, it’s
incomprehensible to computers until translated to machine
language.

 To speed the programming process even further, high-level
languages were developed in which single statements could be
written to accomplish substantial tasks.

 High-level languages allow you to write instructions that look
almost like everyday English and contain commonly used
mathematical expressions.

 Translator programs called compilers convert high-level
language programs into machine language.

 Interpreter programs were developed to execute high-level
language programs directly, although more slowly than compiled
programs.

 Figure 1.16 introduces a number of popular programming
languages.



Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Objects, or more precisely the classes objects come from, are essentially reusable
software components.

 Almost any noun can be reasonably represented as a software object in terms of
attributes (e.g., name, color and size) and behaviors (e.g., calculating, moving and
communicating).

 Software developers are discovering that using a modular, object-oriented design
and implementation approach can make software-development groups much
more productive than was possible with earlier techniques—object-oriented
programs are often easier to understand, correct and modify.

The Automobile as an Object
 Suppose you want to drive a car and make it go faster by pressing its accelerator

pedal.
 Before you can drive a car, someone has to design it.
 A car typically begins as engineering drawings, similar to the blueprints that

describe the design of a house.
 These drawings include the design for an accelerator pedal.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The pedal hides from the driver the complex mechanisms
that actually make the car go faster, just as the brake
pedal hides the mechanisms that slow the car, and the
steering wheel hides the mechanisms that turn the car.

 This enables people with little or no knowledge of how
engines, braking and steering mechanisms work to drive a
car easily.

 Before you can drive a car, it must be built from the
engineering drawings that describe it.

 A completed car has an actual accelerator pedal to make
the car go faster, but even that’s not enough—the car
won’t accelerate on its own (hopefully!), so the driver must
press the pedal to accelerate the car.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Methods and Classes
 Performing a task in a program requires a method.
 The method houses the program statements that actually perform its

tasks.
 It hides these statements from its user, just as a car’s accelerator pedal

hides from the driver the mechanisms of making the car go faster.
 In object-oriented programming languages, we create a program unit

called a class to house the set of methods that perform the class’s tasks.
 For example, a class that represents a bank account might contain one

method to deposit money to an account, another to withdraw money
from an account and a third to inquire what the account’s current
balance is.

 A class is similar in concept to a car’s engineering drawings, which
house the design of an accelerator pedal, steering wheel, and so on.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Instantiation
 Just as someone has to build a car from its engineering drawings before

you can actually drive a car, you must build an object from a class before
a program can perform the tasks that the class’s methods define.

 The process of doing this is called instantiation. An object is then
referred to as an instance of its class.

Reuse
 Just as a car’s engineering drawings can be reused many times to build

many cars, you can reuse a class many times to build many objects.
 Reuse of existing classes when building new classes and programs saves

time and effort.
 Reuse also helps you build more reliable and effective systems, because

existing classes and components often have gone through extensive
testing, debugging and performance tuning.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Messages and Method Calls
 When you drive a car, pressing its gas pedal

sends a message to the car to perform a task—
that is, to go faster. Similarly, you send messages
to an object.

 Each message is implemented as a method call
that tells a method of the object to perform its
task.

 For example, a program might call a particular
bank-account object’s deposit method to
increase the account’s balance.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Attributes and Instance Variables
 A car, besides having capabilities to accomplish tasks, also has

attributes, such as its color, its number of doors, the amount of
gas in its tank, its current speed and its record of total miles
driven (i.e., its odometer reading).

 Like its capabilities, the car’s attributes are represented as part
of its design in its engineering diagrams (which, for example,
include an odometer and a fuel gauge).

 As you drive an actual car, these attributes are carried along with
the car.

 Every car maintains its own attributes.
 For example, each car knows how much gas is in its own gas

tank, but not how much is in the tanks of other cars.
 An object, similarly, has attributes that it carries along as it’s

used in a program.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 These attributes are specified as part of the
object’s class.

 For example, a bank-account object has a
balance attribute that represents the amount of
money in the account.

 Each bank-account object knows the balance in
the account it represents, but not the balances of
the other accounts in the bank.

 Attributes are specified by the class’s instance
variables.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Encapsulation
 Classes encapsulate (i.e., wrap) attributes and

methods into objects—an object’s attributes and
methods are intimately related.

 Objects may communicate with one another, but
normally they’re not allowed to know how other
objects are implemented—implementation details
are hidden within the objects themselves.

 This information hiding is crucial to good
software engineering.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Inheritance
 A new class of objects can be created quickly and

conveniently by inheritance—the new class
absorbs the characteristics of an existing class,
possibly customizing them and adding unique
characteristics of its own.

 In our car analogy, an object of class
“convertible” certainly is an object of the more
general class “automobile,” but more specifically,
the roof can be raised or lowered.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 1.17 lists key technical and business
publications that will help you stay up-to-
date with the latest news and trends in
computer, Internet and web technology.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

