
Internet & World Wide Web
How to Program, 5/e

Copyright © Pearson, Inc. 2013. All Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The CSS3 text-shadow property makes it easy to
add a text shadow effect to any text (Fig. 5.1).

 The text-shadow property has four values which
represent:
◦ Horizontal offset of the shadow—the number of pixels that

the text-shadow will appear to the left or the right of the
text. A negative value moves the text-shadow to the left; a
positive value moves it to the right.
◦ Vertical offset of the shadow—the number of pixels that the
text-shadow will be shifted up or down from the text. A
negative value moves the shadow up, whereas a positive
value moves it down.
◦ blur radius—the blur (in pixels) of the shadow. A blur-

radius of 0px would result in a shadow with a sharp edge
(no blur). The greater the value, the greater the blurring of
the edges.
◦ color—determines the color of the text-shadow.

Copyright © Pearson, Inc. 2013. All

Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The border-radius property allows you to add rounded
corners to an element (Fig. 5.2).

 For the first rectangle, we set the border-radius to 15px.
This adds slightly rounded corners to the rectangle.

 For the second rectangle, we increase the border-radius to
50px, making the left and right sides completely round.

 Any border-radius value greater than half of the shortest
side length produces a completely round end.

 You can also specify the radius for each corner with border-
top-left-radius, border-top-right-radius, border-
bottom-left-radius and border-bottom-right-radius.



Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 CSS3 allows you to express color in several ways in addition
to standard color names (such as Aqua) or hexadecimal RGB
values (such as #00FFFF for Aqua).

 RGB (Red, Green, Blue) or RGBA (Red, Green, Blue, Alpha)
gives you greater control over the exact colors in your web
pages.

 The value for each color—red, green and blue—can range
from 0 to 255.

 The alpha value—which represents opacity—can be any value
in the range 0.0 (fully transparent) through 1.0 (fully
opaque).

 If you were to set the background color as follows:
 background: rgba(255, 0, 0, 0.5);

 the resulting color would be a half-opaque red.
 There are over 140 HTML color names, whereas there are

16,777,216 different RGB colors (256 x 256 x 256) and
varying opacities of each.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 CSS3 also allows you to express color using HSL (hue,
saturation, lightness) or HSLA (hue, saturation, lightness,
alpha) values.

 The hue is a color or shade expressed as a value from 0 to
359 representing the degrees on a color wheel (a wheel is 360
degrees).

 The colors on the wheel progress in the order of the colors of
the rainbow—red, orange, yellow, green, blue, indigo and
violet.

 The value for red, which is at the beginning of the wheel, is 0.
 Green hues have values around 120 and blue hues have

values around 240.
 A hue value of 359, which is just left of 0 on the wheel, would

result in a red hue.
 The saturation—the intensity of the hue—is expressed as a

percentage, where 100% is fully saturated (the full color) and
0% is gray.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Lightness—the intensity of light or luminance of
the hue—is also expressed as a percentage.

 A lightness of 50% is the actual hue.

 If you decrease the amount of light to 0%, the
color appears completely dark (black).

 If you increase the amount of light to 100%, the
color appears completely light (white).

 For example, if you wanted to use an hsla value
to get the same color red as in our example of an
rgba value, you would set the background
property as follows:

 background: hsla(0, 100%, 50%, 0.5);

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 You can shadow any block-level element in CSS3.

 Figure 5.3 shows you how to create a box
shadow.
◦ Horizontal offset of the shadow—the number of pixels

that the box-shadow will appear to the left or the right
of the box. A positive value moves the box-shadow to
the right
◦ Vertical offset of the shadow—the number of pixels the
box-shadow will be shifted up or down from the box. A
positive value moves the box-shadow down.
◦ Blur radius—A blur-radius of 0px would result in a

shadow with a sharp edge (no blur). The greater the
value, the more the edges of the shadow are blurred.

◦ Color—the box-shadow’s color.


Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Linear gradients are a type of image that
gradually transitions from one color to the
next horizontally, vertically or diagonally.

 You can transition between as many colors as
you like and specify the points at which to
change colors, called color-stops,
represented in pixels or percentages along
the gradient line—the angle at which the
gradient extends.

 You can use gradients in any property that
accepts an image.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Creating Linear Gradients
 In Fig. 5.4, we create three linear gradients—vertical,

horizontal and diagonal—in separate rectangles.

 The background property for each of the three linear
gradient styles (vertical, horizontal and diagonal) is defined
multiple times in each style—once for WebKit-based
browsers, once for Mozilla Firefox and once using the
standard CSS3 syntax for linear gradients.

 This occurs frequently when working with CSS3, because
many of its features are not yet finalized.

 Many of the browsers have gone ahead and begun
implementing these features so you can use them now.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

WebKit Vertical Linear Gradient
 Begin with the background property.
 The linear gradient syntax for WebKit differs

slightly from that for Firefox.
 For WebKit browsers, we use -webkit-gradient.
 We then specify the type of gradient (linear) and

the direction of the linear gradient, from center
top to center bottom.

 Next, we specify the color-stops for the linear
gradient.

 Within each color-stop are two values—the first is
the location of the stop and the second is the color.

 You can use as many color-stops as you like.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Mozilla Vertical Linear Gradient
 For Mozilla browsers, we use -moz-linear-
gradient.

 We specify the gradient-line (top center),
which is the direction of the gradient.

 After the gradient-line we specify each color
and color-stop.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Standard Vertical Linear Gradient
 The standard CSS3 syntax for linear gradients is

also slightly different.
 First, we specify the linear-gradient.
 We include the values for the gradient—the

direction of the gradient (top), followed by each
color and color-stop.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Horizontal Linear Gradient
 Next we create a rectangle with a horizontal (left-

to-right) gradient.
 For WebKit, the direction of the gradient is left
top to right top, followed by the colors and
color-stops.

 For Mozilla, we specify the gradient-line (left),
followed by the colors and color-stops.

 The standard CSS3 syntax begins with the direction
(left), indicating that the gradient changes from
left to right, followed by the colors and color-
stops.

 The direction can also be specified in degrees, with
0 degrees straight up and positive degrees
progressing clockwise.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Diagonal Linear Gradient

 In the third rectangle we create a diagonal linear
gradient.

 For WebKit, the direction of the gradient is left
top to right bottom, followed by the colors and
color-stops.

 For Mozilla, we specify the gradient-line (top
left), followed by the colors and color-stops.

 The standard CSS3 syntax begins with the direction
(135deg), indicating that the gradient changes at a
45-degree angle, followed by the colors and
color-stops.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Vendor Prefixes

 Vendor prefixes (Fig. 5.5) and are used for
properties that are still being finalized in the
CSS specification but have already been
implemented in various browsers.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Prefixes are not available for every browser or for every property.
 If we remove the prefixed versions of the linear gradient styles in

this example, the gradients will not appear when the page is
rendered in a WebKit-based browser or Firefox.

 If you run this program in browsers that don’t support gradients yet,
the gradients will not appear.

 It’s good practice to include the multiple prefixes when they’re
available so that your pages render properly in the various browsers.

 As the CSS3 features are finalized and incorporated fully into the
browsers, the prefixes will become unnecessary.

 Many of the new CSS3 features have not yet been implemented in
Internet Explorer.

 When using vendor prefixes in styles, always place them before the
nonprefixed version.

 The last version of the style that a given browser supports takes
precedence and the browser will use it. By listing the standard non-
prefixed version last, the browser will use the standard version over
the prefixed version when the standard version is supported.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Radial gradients are similar to linear gradients, but the color
changes gradually from an inner point (the start) to an outer
circle (the end) (Fig. 5.6).

 In this example, the radial-gradient property has three
values.

 The first is the position of the start of the radial gradient—in
this case, the center of the rectangle. Other possible values
for the position include top, bottom, left and right.

 The second value is the start color (yellow), and the third is
the end color (red).

 The resulting effect is a box with a yellow center that
gradually changes to red in a circle around the starting
position.

 In this case, notice that other than the vendor prefixes, the
syntax of the gradient is identical for WebKit browsers,
Mozilla and the standard CSS3 radial-gradient.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The -webkit-text-stroke property is a nonstandard
property for WebKit-based browsers that allows
you to add an outline (text stroke) around text.

 Four of the seven browsers we use in this book are
WebKit based—Safari and Chrome on the desktop
and the mobile browsers in iOS and Android.

 In Fig. 5.7, we set the color of the h1 text to
LightCyan.

 We add a -webkit-text-stroke with two values—
the outline thickness (2px) and the color of the text
stroke (black).

 We used the font-size 500% here so you could
see the outline better.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 CSS3 allows you to add multiple background images to an element
(Fig. 5.8).

 The style begins by adding two background-images—logo.png and
ocean.png.

 Next, we specify each image’s placement using property
background-position.

 The comma-separated list of values matches the order of the
comma-separated list of images in the background-image
property.

 The first value—bottom right—places the first image, logo.png,
in the bottom-right corner of the background in the border-box.

 The last value—100% center—centers the entire second image,
ocean.png, in the content-box so that it appears behind the
content and stretches to fill the content-box.

 The background-origin determines where each image is placed
using the box model we discussed in Fig. 4.13.

 The first image (logo.png) is in the outermost border-box, and the
second image (ocean.png) is in the innermost content-box.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 5.9 shows how to add a simple reflection of an
image using the -webkit-box-reflect property.

 This is a nonstandard property that’s available only in
WebKit-based browsers for now.

 The -webkit-box-reflect property’s first value is the
direction of the reflection.

 The direction value may be above, below, left, or
right.

 The second value is the offset, which determines the
space between the image and its reflection.

 Optionally, you can specify a gradient to apply to the
reflection.

 The first gradient causes the bottom reflection to fade
away from top to bottom. The second gradient causes
the right reflection to fade away from left to right.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The CSS3 border-image property uses images
to place a border around any block-level
element (Fig. 5.10).

 We set a div’s border-width to 30px, which
is the thickness of the border we’re placing
around the element.

 Next, we specify a width of 234px, which is
the width of the entire rectangular border.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Stretching an Image Border
 In this example, we create two image border styles.
 In the first, we stretch (and thus distort) the sides

of the image to fit around the element while
leaving the corners of the border image unchanged
(not stretched).

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Stretching an Image Border
 The border-image property has six values:
◦ border-image-source—the URL of the image to use in the

border (in this case, url(border.png)).
◦ border-image-slice—expressed with four space-separated

values in pixels. These values are the inward offsets from
the top, right, bottom and left sides of the image. The
border-image-slice divides the image into nine regions:
four corners, four sides and a middle, which is transparent
unless otherwise specified. You may not use negative
values. We could express the border-image-slice in two
values, in which case the first value would represent the top
and bottom, and the second value the left and right. The
border-image-slice may also be expressed in
percentages.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Stretching an Image Border
◦ border-image-repeat—specifies how the regions of the

border image are scaled and tiled (repeated).
 Indicating stretch just once creates a border that will stretch

the top, right, bottom and left regions to fit the area.
 You may specify two values for the border-image-repeat

property.
 If we specified stretch repeat, the top and bottom regions of

the image border would be stretched, and the right and left
regions of the border would be repeated (i.e., tiled) to fit the
area.

 Other possible values for the border-image-repeat property
include round and space.

 If you specify round, the regions are repeated using only whole
tiles, and the border image is scaled to fit the area.

 If you specify space, the regions are repeated to fill the area
using only whole tiles, and any excess space is distributed
evenly around the tiles.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Repeating an Image Border
 Next, we create an image border by repeating the

regions to fit the space.
 The border-image property includes four values:
◦ border-image-source—the URL of the image to use in the

border (once again, url(border.png)).
◦ border-image-slice—in this case, we provided two

values expressed in percentages for the top/bottom and
left/right, respectively.
◦ border-image-repeat—the value repeat specifies that

the tiles are repeated to fit the area, using partial tiles to fill
the excess space.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 In Fig. 5.11, we create a simple animation of
an image that moves in a diamond pattern as
it changes opacity.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

animation Property
 The animation property allows you to

represent several animation properties in a
shorthand notation, rather than specifying
each separately, as in:
 animation-name: movingImage;
animation-timing-function: linear;
animation-duration: 10s;
animation-delay: 1s;
animation-iteration-count: 2;
animation-direction: alternate;

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 In the shorthand notation, the values are listed in the
following order:
◦ animation-name—represents the name of the animation

(movingImage).
◦ animation-timing-function—determines how the animation

progresses in one cycle of its duration. Possible values
include linear, ease, ease-in, ease-out, ease-in-out,
cubic-bezier.
 linear specifies that the animation will move at the same

speed from start to finish.
 The default value, ease, starts slowly, increases speed, then

ends slowly.
 ease-in starts slowly, then speeds up, whereas the ease-out

value starts faster, then slows down.
 ease-in-out starts and ends slowly.
 cubic-bezier allows you to customize the timing function with

four values between 0 and 1, such as cubic-bezier(1,0,0,1)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

◦ animation-duration—specifies the time in seconds (s) or
milliseconds (ms) that the animation takes to complete one
iteration (10s in this case).
◦ animation-delay—specifies the number of seconds (1s in

this case) or milliseconds after the page loads before the
animation begins.
◦ animation-iteration-count—specifies the number of times

the animation will run. You may use the value infinite to
repeat the animation continuously.
◦ animation-direction—specifies the direction in which the

animation will run. The value alternate used here
specifies that the animation will run in alternating
directions—in this case, counterclockwise (as we define
with our keyframes), then clockwise. The default value,
normal, would run the animation in the same direction for
each cycle.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The shorthand animation property cannot be used with the
animation-play-state property—it must be specified
separately.

 If you do not include the animation-play-state, which
specifies whether the animation is paused or running, it
defaults to running.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

@keyframes Rule and Selectors
 The @keyframes rule defines the element’s properties that will change

during the animation, the values to which those properties will change,
and when they’ll change.

 The @keyframes rule is followed by the name of the animation
(movingImage) to which the keyframes are applied.

 CSS rules consist of one or more selectors followed by a declaration
block in curly braces ({}).

 Selectors enable you to apply styles to elements of a particular type or
attribute.

 A declaration block consists of one or more declarations, each of which
includes the property name followed by a colon (:), a value and a
semicolon (;).

 In this example, the @keyframes rule includes five selectors to represent
the points-in-time for our animation.

 You can break down the animation into as many points as you like.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 With CSS3 transitions, you can change an
element’s style over a specified duration.

 CSS3 transformations allow you to move, rotate,
scale and skew elements.

 Transitions are similar in concept to the
animations, but transitions allow you to specify
only the starting and ending values of the CSS
properties being changed.

 An animation’s keyframes enable you to control
intermediate states throughout the animation’s
duration.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 5.12 uses the transition and transform properties to
scale and rotate an image 360 degrees when the cursor
hovers over it.

 We begin by defining the transition. For each property that
will change, the transition property specifies the duration of
that change.

 We could specify a comma-separated list of property names
that will change and the individual durations over which each
property will change. For example:

 transition: transform 4s, opacity 2s;

 indicates that a transform takes four seconds to apply and
the opacity changes over two seconds—thus, the transform
will continue for another two seconds after the opacity
change completes.

 In this example, we define the transform only when the user
hovers the mouse over the image.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The :hover pseudo-class formerly worked only for anchor
elements but now works with any element.

 We use :hover to begin the rotation and scaling of the
image.

 The transform property specifies that the image will rotate
360deg and will scale to twice its original width and height
when the mouse hovers over the image.

 The transform property uses transformation functions, such
as rotate and scale, to perform the transformations.

 The rotate transformation function receives the number of
degrees. Negative values cause the element to rotate left.

 The scale transformation function specifies how to scale the
width and height. The value 1 represents the original width or
original height, so values greater than 1 increase the size and
values less than 1 decrease the size.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 CSS3 transformations also allow you to skew block-level
elements, slanting them at an angle either horizontally
(skewX) or vertically (skewY).

 We use the animation and transform properties to skew a
rectangle and text horizontally by 45 degrees (Fig. 5.13).

 First we create a rectangle with a LightGreen background, a
solid DarkGreen border and rounded corners.

 The animation property specifies that the element will skew
in a three-second (3s) interval for an infinite duration.

 The fourth value, linear, is the animation-timing-
function.

 Next, we use the @keyframes rule and selectors to specify
the angle of the skew transformation at different intervals.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 We can use the transition property to create the visually
beautiful effect of melting one image into another (Fig. 5.14).

 The transition property includes three values. First, we
specify that the transition will occur on the opacity of the
image.

 The second value, 4s, is the transition-duration.
 The third value, ease-in-out, is the transition-timing-
function.

 Next, we define :hover with an opacity of 0, so when the
cursor hovers over the top image, its opacity becomes fully
transparent, revealing the bottom image directly behind it. We
then add the bottom and top images, placing one directly
behind the other.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Using the @font-face rule, you can specify fonts for a
web page, even if they’re not installed on the user's
system.

 You can use downloadable fonts to help ensure a
uniform look across client sites.

 In Fig. 5.15, we use the Google web font named
“Calligraffitti.”

 You can find numerous free, open-source web fonts
at http://www.google.com/webfonts.

 Make sure the fonts you get from other sources have
no legal encumbrances.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 To get Google’s Calligraffitti font, go to
http://www.google.com/webfonts and use the search box on the
site to find the font “Calligraffitti.”

 Next, click Quick-use to get the link to the style sheet that contains
the @font-face rule.

 Paste that link element into the head section of your document.
The referenced CSS style sheet contains the following CSS rules:

 @media screen {
@font-face {
 font-family: 'Calligraffitti';
 font-style: normal;
 font-weight: normal;
 src: local('Calligraffiti'),
 url('http://themes.googleusercontent.com/static/fonts/
 calligraffitti/v1/vLVN2Y-z65rVu1R7lWdvyKIZAuDcNtpCWuPSaIR0Ie8
 .woff') format('woff');
}
}

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The @media screen rule specifies that the
font will be used when the document is
rendered on a computer screen.

 The @font-face rule includes the font-
family (Calligraffitti), font-style
(normal) and font-weight (normal).

 The @font-face rule also includes the
location of the font.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Flexible Box Layout Module (FBLM) makes it easy
to align the contents of boxes, change their size,
change their order dynamically, and lay out the
contents in any direction.

 In Fig. 5.16, we create flexible divs for four
programming tips. When the mouse hovers over
one of the divs, the div expands, the text
changes from black to white, the background
color changes and the layout of the text changes.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 We define a div to which we apply the flexbox CSS
class. That div contains four other divs.

 The flexbox class’s display property is set to the
new CSS3 value box.

 The box-orient property specifies the orientation of
the box layout. The default value is horizontal
(which we specified anyway). You can also use
vertical.

 For the nested divs, we specify a one-second ease-
out transition. This will take effect when these the
:hover pseudo-class style is applied to one of these
divs to expand it.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

:nth-child Selectors
 In CSS3, you can use selectors to easily select

elements to style based on their attributes.
 We use :nth-child selectors to select each of the

four div elements in the flexbox div to style.
 div:nth-child(1) selects the div element that’s

the first child of its parent and applies the
background-color LightBlue.

 Similarly, div:nth-child(2) selects the div
element that’s the second child of its parent,
div:nth-child(3) selects the third child of its
parent, and div:nth-child(4) selects the fourth
child of its parent—each applies a specified
background-color.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Next, we define styles that are applied to the
nested div elements when the mouse hovers over
them—the width (200px), color (white) and
font-weight (bold).

 We use :nth-child selectors to specify a new
background color for each nested div.

 Finally, we style the p element—the text within
each div.

 In the output, notice that the text in the second
child element (the Error-Prevention Tips), the
overflow text is hidden. When the mouse hovers
over the element, all of the text is revealed.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 CSS3 allows you to easily create multicolumn layouts.

 In Figure 5.17, we create a three-column layout by
setting the column-count property to 3 and the
column-gap property (the spacing between columns)
to 30px.

 We then add a thin black line between each column
using the column-rule property.

 When you run this example, try resizing your browser
window. The width of the columns changes to fit the
three-column layout in the browser.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 With CSS3 media queries you can determine
the finer attributes of the media on which the
user is viewing the page, such as the length
and width of the viewing area on the screen,
to better customize your presentation.

 In Fig. 5.18, we modify the multicolumn
example to alter the numbers of columns and
the rules between columns based on the
screen size of the device on which the page is
viewed.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

@media-Rule
 The @media rule is used to determine the type and size

of device on which the page is rendered.
 When the browser looks at the rule, the result is either

true or false. The rule’s styles are applied only if the
result is true.

 First, we use the @media rule to determine whether the
page is being rendered on a handheld device (e.g., a
smartphone) with a max-width of 480px, or a device
with a screen that has a max-device-width of 480px,
or on a screen having max-width of 480px.

 If this is true, we set the column-count to 1—the page
will be rendered in a single column on handheld devices
such as an iPhone or in browser windows that have
been resized to 480px or less.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 If the condition of the first @media rule is false, a
second @media rule determines whether the page
is being rendered on devices with a min-width of
481px and a max-width of 1024px.

 If this condition is true, we set the column-count
to 2, the column-gap (the space between columns)
to 30px and the column-rule (the vertical line
between the columns) to 1px outset black.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 If the conditions in the first two @media rules are
false, we use a third @media rule to determine
whether the page is being rendered on devices
with a min-width of 1025px.

 If the condition of this rule is true, we set the
column-count to 3, the column-gap to 30px
(lines 39–40) and the column-rule to 1px
outset black.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

