Chapter 5
Introduction to Cascading

Style Sheets (CSS): Part 2

Internet & World Wide Web
How to Program, 5/e

OBJECTIVES
In this chapter you'll:

m Add text shadows and text-stroke effects.

m Create rounded corners.

m Add shadows to elements.

m Create linear and radial gradients, and reflections.
m Create animations, transitions and transformations.

Use multiple background images and image borders.

Create a multicolumn layout.

Use flexible box model layout and : nth-chi1d selectors.
Use the @font-face rule to specify fonts for a web page.

Use RGBA and HSLA colors.

Use vendor prefixes.

Use media queries to customize content to fit various screen sizes.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.1 Introduction

5.1 Text Shadows

5.2 Rounded Corners

5.3 Color

5.4 Box Shadows

5.5 Linear Gradients; Introducing Vendor Prefixes

5.6 Radial Gradients

5.7 (Optional: WebKit Only) Text Stroke

5.8 Multiple Background Images

5.9 (Optional: WebKit Only) Reflections
5.10 Image Borders

5.11 Animation; Selectors

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.12

5.14
5.15
5.15
5.16
5.18

Transitions and Transformations

5.13.1 transition and transform Properties
5.12.2 Skew
5.12.3 Transitioning Between Images

Downloading Web Fonts and the @font-face Rule
Flexible Box Layout Module and :nth-child Selectors

Multicolumn Layout
Media Queries

Web Resources

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.1 Text Shadows

» The CSS3 text-shadow property makes it easy to
add a text shadow effect to any text (Fig. 5.1).

» The text-shadow property has four values which
represent:

- Horizontal offset of the shadow—the number of pixels that
the text-shadow will appear to the /eft or the right of the
text. A negative value moves the text-shadow to the /eft; a
positive value moves it to the right.

- Vertical offset of the shadow—the number of pixels that the
text-shadow will be shifted up or down from the text. A
negative value moves the shadow up, whereas a positive
value moves it down.

> blur radius—the blur (in pixels) of the shadow. A blur-
radius of Opx would result in a shadow with a sharp edge

(no blur). The greater the value, the greater the blurring of
the edges.

o color—determines the color of the text-shadow.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

1 <!DOCTYPE html>

2

3 <!-- Fig. 5.1: textshadow.html -->

4 <!-- Text shadow in CSS3. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Text Shadow</title>

9 <style type = "text/css''>

10 hl

11 {

12 text-shadow: -4px 4px 6px dimgrey; /* add shadow */
13 font-size: 400%; /* 1increasing the font size */
14 }

15 </style>

16 </head>

17 <body>

18 <h1l>Text Shadow</hl>

19 </body>
20 </html>

Fig. 5.1 | Text shadow in CSS3. (Part | of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

m

C @ file:///C:/books/2011/IW3HTP5/examples/ch05/ 53 A

~o ' Text Shadow

Fig. 5.1 | Text shadow in CSS3. (Part 2 of 2.)

-~

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.2 Rounded Corners

» The border-radius property allows you to add rounded
corners to an element (Fig. 5.2).

» For the first rectangle, we set the border-radius to 15px.
This adds slightly rounded corners to the rectangle.

» For the second rectangle, we increase the border-radius to
50px, making the left and right sides completely round.

» Any border-radius value greater than half of the shortest
side length produces a completely round end.

» You can also specify the radius for each corner with border-
top-left-radius, border-top-right-radius, border-
bottom-left-radius and border-bottom-right-radius.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 5.2: roundedcorners.html -->

4 <!-- Using border-radius to add rounded corners to two elements. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Rounded Corners</title>

9 <style type = "text/css'>

10 div

11 {

12 border: 3px solid navy;

13 padding: 5px 20px;

14 background: Tightcyan;

15 width: 200px;

16 text-align: center;

17 border-radius: 15px; /* adding rounded corners */
18 margin-bottom: 20px;

19 }

Fig. 5.2 | Using border-radius to add rounded corners to two
elements. (Part | of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

20 #round?2

21 {

22 border: 3px solid navy;

23 padding: 5px 20px;

24 background: lightcyan;

25 width: 200px;

26 text-align: center;

27 border-radius: 50px; /* increasing border-radius */
28 }

29 </style>

30 </head>

31 <body>

32 <div>The border-radius property adds rounded corners

33 to an element.</div>

34 <div id = "round2">Increasing the border-radius rounds the corners
35 of the element more.</div>

36 </body>

37 </html>

Fig. 5.2 | Using border-radius to add rounded corners to two
elements. (Part 2 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

@ Rounded Corners x

o OfiIe:///C:/books/2011/IW3HTP5/exampIes/chOS/i‘: R

The border-radius property adds F
rounded corners to an element.

m

Increasing the border-radis
rounds the comers of the element
more.

4 i

Fig. 5.2 | Using border-radius to add rounded corners to two
elements. (Part 3 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.3 Color

» CSS3 allows you to express color in several ways in addition
to standard color names (such as Aqua) or hexadecimal RGB
values (such as #00FFFF for Aqua).

» RGB (Red, Green, Blue) or RGBA (Red, Green, Blue, Alpha)
gives you greater control over the exact colors in your web
pages.

» The value for each color—red, green and blue—can range
from 0 to 255.

» The alpha value—which represents opacity—can be any value
in the range 0.0 (fully transparent) through 1.0 (fully
opaque).

» If you were to set the background color as follows:

- background: rgba(255, 0, 0, 0.5);
the resulting color would be a half-opaque red.
» There are over 140 HTML color names, whereas there are

16,777,216 different RGB colors (256 x 256 x 256) and
varying opacities of each.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.3 Color (cont.)

4

CSS3 also allows you to express color using HSL (hue,
saturation, lightness) or HSLA (hue, saturation, lightness,
alpha) values.

The Aueis a color or shade expressed as a value from 0 to
359 representing the degrees on a color wheel (a wheel is 360
degrees).

The colors on the wheel progress in the order of the colors of
theI rainbow—red, orange, yellow, green, blue, indigo and
violet.

The value for red, which is at the beginning of the wheel, is 0.

Green hues have values around 120 and blue hues have
values around 240.

A hue value of 359, which is just left of 0 on the wheel, would
result in a red hue.

The saturation—the intensity of the hue—is expressed as a
percentage, where 100% is fully saturated (the full color) and
0% is gray.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.3 Color (cont.)

>

Lightness—the intensity of light or luminance of
the hue—is also expressed as a percentage.

A lightness of 50% is the actual hue.

If you decrease the amount of light to 0%, the
color appears completely dark (black).

If you /ncrease the amount of light to 100%, the
color appears completely light (white).

For example, if you wanted to use an hsla value
to get the same color red as in our example of an
rgba value, you would set the background
property as follows:

- background: hsla(0, 100%, 50%, 0.5);

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.4 Box Shadows

» You can shadow any block-level element in CSS3.

» Figure 5.3 shows you how to create a box
shadow.

- Horizontal offset of the shadow—the number of pixels
that the box-shadow will appear to the left or the right
of the box. A positive value moves the box-shadow to
the right

> Vertical offset of the shadow—the number of pixels the
box-shadow will be shifted up or down from the box. A
positive value moves the box-shadow down.

> Blur radius—A blur-radius of Opx would result in a
shadow with a sharp edge (no blur). The greater the
value, the more the edges of the shadow are blurred.

> Color—the box-shadow’s color.

\\\\\\

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>
2
3 <!-- Fig. 5.3: boxshadow.htm]l -->
4 <!-- Creating box-shadow effects. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Box Shadow</title>
9 <style type = "text/css'>
10 div
11 {
12 width: 200px;
13 height: 200px;
14 background-color: plum;
15 box-shadow: 25px 25px 50px dimgrey;
16 float: left;
17 margin-right: 120px;
18 margin-top: 40px;
19 }
20

Fig. 5.3 | Creating box-shadow effects. (Part | of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

21 #box?2

22 {

23 width: 200px;

24 height: 200px;

25 background-color: plum;

26 box-shadow: -25px -25px 50px dimgrey;

27 }

28 h2

29 {

30 text-align: center;

31 }

32 </style>

33 </head>

34 <body>

35 <div><h2>Box Shadow Bottom and Right</h2></div>
36 <div id = "box2"><h2>Box Shadow Top and Left</h2></div>
37 </body>

38 </html>

Fig. 5.3 | Creating box-shadow effects. (Part 2 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

(© Box Shadow %

> C 1QfiIg://(C:/book;{?Ol1/IV\{3HTPS{germp!gs/chOS/ﬁgO§_03/pqxsﬁhadow.htrpl” ﬂr 2,

Fig. 5.3 | Creating box-shadow effects. (Part 3 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

<

5.5 Linear Gradients; Introducing Vendor
Prefixes

» Linear gradients are a type of image that
gradually transitions from one color to the
next horizontally, vertically or diagonally.

» You can transition between as many colors as
you like and specify the points at which to
change colors, called color-stops,
represented in pixels or percentages along
the gradient [ine—the angle at which the
gradient extends.

» You can use gradients in any property that

accepts an image.

AN

NAARRA Copyright © Pearson, Inc. 2013. All
Rights Reserved.

<

5.5 Linear Gradients; Introducing Vendor
Prefixes (cont.)

Creating Linear Gradients

» In Fig. 5.4, we create three linear gradients—vertical,
horizontal and diagonal/—in separate rectangles.

» The background property for each of the three linear
gradient styles (vertical, horizontal and diagonal) is defined
multiple times in each style—once for WebKit-based
browsers, once for Mozilla Firefox and once using the
standard CSS3 syntax for linear gradients.

» This occurs frequently when working with CSS3, because
many of its features are not yet finalized.

» Many of the browsers have gone ahead and begun
implementing these features so you can use them now.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 5.4: Tineargradient.html -->

4 <!-- Linear gradients in CSS3. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Linear Gradient</title>

9 <style type = "text/css'>

10 div

11 {

12 width: 200px;

13 height: 200px;

14 border: 3px solid navy;

15 padding: 5px 20px;

16 text-align: center;

17 background: -webkit-gradient(

18 Tinear, center top, center bottom,
19 color-stop(15%, white), color-stop(50%, 1ightsteelblue),
20 color-stop(75%, navy));
21 background: -moz-linear-gradient(
22 top center, white 15%, lightsteelblue 50%, navy 75%);

Fig. 5.4 | Linear gradients in CSS3. (Part | of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

23 background: Tinear-gradient(

24 to bottom, white 15%, 1lightsteelblue 50%, navy 75%);
25 float: left;

26 margin-right: 15px;

27 3

28 #horizontal

29 {

30 width: 200px;

31 height: 200px;

32 border: 3px solid orange;

33 padding: 5px 20px;

34 text-align: center;

35 background: -webkit-gradient(

36 Tinear, left top, right top,

37 color-stop(15%, white), color-stop(50%, yellow),
38 color-stop(75%, orange));

39 background: -moz-linear-gradient(

40 left, white 15%, yellow 50%, orange 75%);
41 background: Tinear-gradient(

42 90deg, white 15%, yellow 50%, orange 75%);
43 margin-right: 15px;

44 }

Fig. 5.4 | Linear gradients in CSS3. (Part 2 of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

45 #angle

46 {

47 width: 200px;

48 height: 200px;

49 border: 3px solid Purple;

50 padding: 5px 20px;

51 text-align: center;

52 background: -webkit-gradient(

53 Tinear, left top, right bottom,

54 color-stop(15%, white), color-stop(50%, plum),
55 color-stop(75%, purple));

56 background: -moz-linear-gradient(

57 top left, white 15%, plum 50%, purple 75%);
58 background: Tinear-gradient(

59 45deg, white 15%, plum 50%, purple 75%);

60 }

61 </style>

62 </head>

63 <body>

64 <div><h2>Vertical Linear Gradient</h2></div>

65 <div id = "horizontal"><h2>Horizontal Linear Gradient</h2></div>
66 <div 1id = "angle''><h2>Diagonal Linear Gradient</h2></div>
67 </body>

68 </html>

Fig. 5.4 | Linear gradients in CSS3. (Part 3 of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

@ Linear Gradient

C ® file:///C:/books/2011/IW3HTP5/examples/ch05/fig05_04/lineargradient 13 & & & @& X,

Vertical Linear
Gradient

Diagonal

Fig. 5.4 | Linear gradients in CSS3. (Part 4 of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

<

5.5 Linear Gradients; Introducing Vendor
Prefixes (cont.)
WebKit Vertical Linear Gradient

4
>

>
>

Begin with the background property.

The linear gradient syntax for WebKit differs
slightly from that for Firefox.

For WebKit browsers, we use -webkit-gradient.

We then specify the type of gradient (11near) and
the direction of the linear gradient, from center
top to center bottom.

Next, we specify the color-stops for the linear
gradient.

Within each color-stop are two values—the first is
the /ocation of the stop and the second is the co/or.

You can use as many color-stops as you like.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

<

5.5 Linear Gradients; Introducing Vendor

Prefixes (cont.)

Mozilla Vertical Linear Gradient

» For Mozilla browsers, we use -moz-11inear-

gradient.
» We specify the gradient-1ine (top center),
which is the direction of the gradient.

» After the gradient-11ne we specify each color
and color-stop.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

<

5.5 Linear Gradients; Introducing Vendor
Prefixes (cont.)

Standard Vertical Linear Gradient

» The standard CSS3 syntax for linear gradients is
also slightly different.
» First, we specify the 1inear-gradient.

» We include the values for the gradient—the

direction of the gradient (top), followed by each
color and color-stop.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

<

5.5 Linear Gradients; Introducing Vendor
Prefixes (cont.)

Horizontal Linear Gradient

Next we create a rectangle with a Aorizontal (left-
to-right) gradient.

4

4

For WebK
top to ri

it, the direction of the gradient is lTeft
ght top, followed by the colors and

color-stops.

For Mozil
followed

The stand
(Teft), in

a, we specify the gradient-1ine (left),
oy the colors and color-stops.

ard CSS3 syntax begins with the direction
dicating that the gradient changes from

left to rig
stops.

nt, followed by the colors and color-

The direction can also be specified in degrees, with

ogressl
AN

O degrees straight up and positive degrees

ng clockwise.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

<

5.5 Linear Gradients; Introducing Vendor
Prefixes (cont.)

Diagonal Linear Gradient

» In the third rectangle we create a diagonal linear
gradient.

» For WebKit, the direction of the gradient is left
top to right bottom, followed by the colors and
color-stops.

» For Mozilla, we specify the gradient-1ine (top
left), followed by the colors and color-stops.

» The standard CSS3 syntax begins with the direction
(135deg), indicating that the gradient changes at a

45-degree angle, followed by the colors and
color-stops.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

<

5.5 Linear Gradients; Introducing Vendor
Prefixes (cont.)

Vendor Prefixes

» Vendor prefixes (Fig. 5.5) and are used for
properties that are still being finalized in the
CSS specification but have already been
implemented in various browsers.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Vendor

prefix Browsers

-ms- Internet Explorer

-moz- Mozilla-based browsers, including Firefox

-0- Opera and Opera Mobile

-webkit- WebKit-based browsers, including Google Chrome,

Safari (and Safari on the iPhone) and Android

Fig. 5.5 | Vendor prefixes.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

<

5.5 Linear Gradients; Introducing Vendor
Prefixes (cont.)

4
4

Prefixes are not available for every browser or for every property.

If we remove the prefixed versions of the linear gradient styles in
this example, the gradients will not appear when the page is
rendered in a WebKit-based browser or Firefox.

If you run this program in browsers that don’t support gradients yet,
the gradients will not appear.

It’s good practice to include the multiple prefixes when they’re
available so that your pages render properly in the various browsers.

As the CSS3 features are finalized and incorporated fully into the
browsers, the prefixes will become unnecessary.

Many of the new CSS3 features have not yet been implemented in
Internet Explorer.

When using vendor prefixes in styles, always place them before the
nonprefixed version.

The last version of the style that a given browser supports takes
precedence and the browser will use it. By listing the standard non-
prefixed version last, the browser will use the standard version over
the prefixed version when the standard version is supported.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.6 Radial Gradients

» Radial gradients are similar to linear gradients, but the color
changes gradually from an inner point (the star?) to an outer
circle (the end) (Fig. 5.6).

» In Ithis example, the radial-gradient property has three
values.

» The first is the position of the start of the radial gradient—in
this case, the center of the rectangle. Other possible values
for the position include top, bottom, Teft and right.

» The second value is the start color (yellow), and the third is
the end color (red).

» The resulting effect is a box with a yellow center that
gradually changes to red in a circle around the starting
position.

» In this case, notice that other than the vendor prefixes, the
syntax of the gradient is identical for WebKit browsers,
Mozilla and the standard CSS3 radial-gradient.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

1 <!DOCTYPE html>

2

3 <!-- Fig. 5.6: radialgradient.html -->

4 <!-- Radial gradients in CSS3. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Radial Gradient</title>

9 <style type = "text/css'>

10 div

11 {

12 width: 200px;

13 height: 200px;

14 padding: 5px;

15 text-align: center;

16 background: -webkit-radial-gradient(center, yellow, red);
17 background: -moz-radial-gradient(center, vyellow, red);
18 background: radial-gradient(center, yellow, red);
19 3
20 </style>
21 </head>

Fig. 5.6 | Radial gradients in CSS3. (Part | of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

22 <body>

23 <div><h2>Radial Gradient</h2></div>
24 </body>
25 </html>

(©) Radial Gradient b

~

Radial gradient
begins with
yellow in the
center, then
changes to red in” |
a circle as it moves
toward the edges of
the box

Fig. 5.6 | Radial gradients in CSS3. (Part 2 of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.7 (Optional: WebKit Only) Text Stroke

» The —webkit-text-stroke property is a nonstandard
property for WebKit-based browsers that allows
you to add an outline (text stroke) around text.

» Four of the seven browsers we use in this book are
WebKit based—Safari and Chrome on the desktop
and the mobile browsers in iOS and Android.

» In Fig. 5.7, we set the color of the h1l text to
LightCyan.

» We add a -webkit-text-stroke with two values—

the outline thickness (2px) and the color of the text
stroke (bTack).

» We used the font-size 500% here so you could
see the outline better.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

1 <!DOCTYPE html>

2

3 <!-- Fig. 5.7: textstroke.html -->
4 <!-- Text stroke in CSS3. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Text Stroke</title>

9 <style type = "text/css'>

10 hl

11 {

12 color: Tightcyan;

13 -webkit-text-stroke: 2px black; /* vendor prefix */
14 font-size: 500%; /* increasing the font size */
15 1

16 </style>

17 </head>

18 <body>

19 <h1>Text Stroke</hl>
20 </body>
21 </html>

Fig. 5.7 | A text-stroke rendered in Chrome. (Part | of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

m

- C @ file)///C;/books/2011/IW3HTP5/examples/ch05/ 55 | A

21 Text Stroke

is 2px black s

-~

m

Fig. 5.7 | A text-stroke rendered in Chrome. (Part 2 of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.8 Multiple Background Images

» 8:5_535alzlgc))ws you to add multiple background images to an element
ig. 5.8).

» The style begins by adding two background-images—1ogo.png and
ocean.png.

» Next, we specify each image’s placement using property
background-position.

» The comma-separated list of values matches the order of the
comma-separated list of images in the background-image
property.

» The first value—bottom right—places the first ima%e, lTogo.png,
in the bottom-right corner of the background in the border-box.

» The last value—100% center—centers the entire second image,
ocean.png, in the content-box so that it appears behind the
content and stretches to fill the content-box.

» The background-origin determines where each image is placed
using the box model we discussed in Fig. 4.13.

» The first image (1Togo.png) is in the outermost border-box, and the
second image (ocean.png) is in the innermost content-box.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 5.8: multiplebackgrounds.html -->

4 <!-- Multiple background images in CSS3. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Multiple Backgrounds</title>

9 <style type = "text/css'>

10 div.background

11 {

12 background-image: url(logo.png), url(ocean.png);
13 background-position: bottom right, 100% center;
14 background-origin: border-box, content-box;
15 background-repeat: no-repeat, repeat;

16 }

17 div.content

18 {

19 padding: 10px 15px;
20 color: white;
21 font-size: 150%;
22 }
23 </style>
24 </head>

Fig. 5.8 | Multiple background images in CSS3. (Part | of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

25 <body>

26 <div class = "background">

27 <div class = "content'>

28 <p>Deitel & Associates, Inc., is an internationally recognized
29 authoring and corporate training organization. The company
30 offers instructor-led courses delivered at client sites

31 worldwide on programming languages and other software topics
32 such as C++, Visual C++^{®}, C, Java™,

33 C#^{®}, Visual Basic^{®},

34 Objective-C^{®}, XML^{®},

35 Python^{®}, JavaScript, object technology,

36 Internet and web programming, and Android and iPhone app

37 development.</p>

38 </div></div>

39 </body>

40 </html>

Fig. 5.8 | Multiple background images in CSS3. (Part 2 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

@ Multiple Backgrounds ®

C @ file:///C;/books/2011/IW3HTP5/examples/ch05/fig05_08/m ¢ N\

Deitel & Associates, Inc., 1s an internationally
recognized authoring and corporate training
organization. The company offers instructor-led
courses delivered at client sites worldwide on

The second image
(ocean.png) is

programming languages and other software topics ‘ centered behind the
such ag:, C++, Visual Ef++®', C Java™, C #®_ Visual | 232&225 22 eeded
Basic®. Objective-C®, XML®, Python®, JavaScript, to fill the

object technology, Internet and web programming, | o

and Android and 1Phone app development. - The first image

(logo.png) is
placed at the
bottom right with

Fig. 5.8 | Multiple background images in CSS3. (Part 3 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.9 (Optional: WebKit Only) Reflections

» Figure 5.9 shows how to add a simple reflection of an
image using the —-webkit-box-reflect property.

» This is a nonstandard property that’s available only in
WebKit-based browsers for now.

» The -webkit-box-reflect property’s first value is the
direction of the reflection.

) Thehdirection value may be above, below, left, or
right.

» The second value is the offset, which determines the
space between the image and its reflection.

» Optionally, you can specify a gradient to apply to the
reflection.

» The first gradient causes the bottom reflection to fade

away from top to bottom. The second gradient causes
the right reflection to fade away from left to right.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

1 <!DOCTYPE html>

2

3 <!-- Fig. 5.9: reflection.html -->

4 <!-- Reflections in CSS3. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Reflection</title>

9 <style type = "text/css'>

10 img { margin: 10px; }

11 img.below

12 {

13 -webkit-box-reflect: below 5px

14 -webkit-gradient(

15 linear, left top, left bottom,
16 from(transparent), to(white));
17 }

Fig. 5.9 | Reflections in CSS3. (Part | of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

18 img.right

19 {

20 -webkit-box-reflect: right 5px

21 -webkit-gradient(

22 linear, right top, left top,

23 from(transparent), to(white));

24 }

25 </style>

26 </head>

27 <body>

28 <img class = "below” src = "jhtp.png” width = "138" height = "180"
29 alt = "Java How to Program book cover':>

30 <img class = "right"” src = "jhtp.png” width = "138" height = "180"
31 alt = "Java How to Program book cover"s

32 </body>

33 </html>

Fig. 5.9 | Reflections in CSS3. (Part 2 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

m

C © file///C:/books/2011/Tve (& & & %] X,

| Horizontal
reflection

Vertical reflection —

Fig. 5.9 | Reflections in CSS3. (Part 3 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.10 Image Borders

» The CSS3 border-image property uses images

to place a border around any block-level
element (Fig. 5.10).

» We set a di1v’s border-width to 30px, which
is the thickness of the border we’re placing
around the element.

» Next, we specify a width of 234px, which is
the width of the entire rectangular border.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 5.10: imageborder.htm]l -->

4 <!-- Stretching and repeating an image to create a border. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Image Border</title>

9 <style type = "text/css'>

10 div

11 {

12 border-width: 30px;

13 width: 234px;

14 padding: 20px 20px;

15 }

16 #stretch

17 {

18 -webkit-border-image: url(border.png) 80 80 80 80 stretch;
19 -moz-border-image: url(border.png) 80 80 80 80 stretch;
20 -o-border-image: url(border.png) 80 80 80 80 stretch;
21 border-image: url(border.png) 80 80 80 80 stretch;
22 }
23 #repeat

Fig. 5.10 | Stretching and repeating an image to create a border. (Part
| of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

24 {

25 -webkit-border-image:url(border.png) 34% 34% repeat;
26 -moz-border-image:url (border.png) 34% 34% repeat;

27 -o-border-image:url (border.png) 34% 34% repeat;

28 border-image:url (border.png) 34% 34% repeat;

29 }

30 </style>

31 </head>

32 <body>

33 <h2>Image Borders</h2>

34
35 <p><div id="stretch">Stretching the image border</div></p>
36 <p><div id=""repeat'>Repeating the image border</div></p>
37 </body>

38 </html>

Fig. 5.10 | Stretching and repeating an image to create a border. (Part
2 of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

@ Image Border X

C © filey///C:/books/2011/IW3HTP5/examples/ch05/ v¢ | X\

-~

Image Borders

Original image used to ——
create the image border

Fig. 5.10 | Stretching and repeating an image to create a border. (Part
3 0of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Corners of the image
remain the same but |
the four sides of the

image are stretched

Corners of the image W R G G G R R

remain the same but ____J| (e

the four sides of the : Repeating the image border
image are repeated .

' e A T T e L3

4

Fig. 5.10 | Stretching and repeating an image to create a border. (Part
40f4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.10 Image Borders (cont.)

Stretching an Image Border

» In this example, we create two image border styles.

» In the first, we stretch (and thus distort) the sides
of the image to fit around the element while
leaving the corners of the border image unchanged
(not stretched).

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.10 Image Borders (cont.)

Stretching an Image Border

» The border-image property has six values:

- border-image-source—the URL of the image to use in the
border (in this case, url(border.png)).

- border-image-slice—expressed with four space-separated
values in pixels. These values are the /nward offsets from
the top, right, bottom and left sides of the image. The
border-image-slice divides the image into nine regions:
four corners, four sides and a middle, which is transparent
unless otherwise specified. You may not use negative
values. We could express the border-image-slicein two
values, in which case the first value would represent the top
and bottom, and the second value the left and right. The
border-image-slice may also be expressed in
percentages.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.10 Image Borders (cont.)

Stretching an Image Border

- border-image-repeat—specifies how the regions of the
border image are scaled and ti/ed(repeated?.

- Indicating stretch just once creates a border that will stretch
the top, right, bottom and left regions to fit the area.

- You may specify two values for the border-image-repeat
property.

- If we specified stretch repeat, the top and bottom regions of
the image border would be stretched, and the right and left

regions of the border would be repeated (i.e., ti/ed) to fit the
area.

- Other possible values for the border-image-repeat property
include round and space.

- If you specify round, the regions are repeated using only whole
tiles, and the border image is scaled to fit the area.

- If you specify space, the regions are repeated to fill the area
usmgf only whole tiles, and any excess space is distributed
evenly around the tiles.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.10 Image Borders (cont.)

Repeating an Image Border

» Next, we create an image border by repeating the
regions to fit the space.

» The border-image property includes four values:

- border-image-source—the URL of the image to use in the
border (once again, url(border.png)).

- border-image-slice—in this case, we provided two
values expressed in percentages for the top/bottom and
left/right, respectively.

- border-image-repeat—the value repeat specifies that
the tiles are repeated to fit the area, using partial tiles to fill
the excess space.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.11 Animation; Selectors

» In Fig. 5.11, we create a simple animation of
an image that moves in a diamond pattern as
it changes opacity.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 5.11: animation.html -->

4 <!-- Animation in (CSS3. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Animation</title>

9 <style type = "text/css'>

10 img

11 {

12 position: relative;

13 -webkit-animation: movingImage linear 10s 1ls 2 alternate;
14 -moz-animation: movingImage 1inear 10s 1ls 2 alternate;
15 animation: movingImage linear 10s 2 1s alternate;

16 }

Fig. 5.11 | Animation in CSS3. The dotted lines show the diamond
path that the image takes, (Part | of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

17 @-webkit-keyframes movingImage

18 {

19 0% {opacity: 0; left: 50px; top: Opx;}
20 25% {opacity: 1; left: Opx; top:5 Opx;}
21 50% {opacity: 0; Tleft: 50px; top: 100px;}
22 75% {opacity: 1; left: 100px; top: 50px;}
23 100% {opacity: 0; left: 50px; top: Opx;}
24 }

25 @-moz-keyframes movingImage

26 {

27 0% {opacity: 0; left: 50px; top: Opx;}
28 25% {opacity: 1; left: Opx; top:5 Opx;}
29 50% {opacity: 0; left: 50px; top: 100px;}
30 75% {opacity: 1; left: 100px; top: 50px;}
31 100% {opacity: 0; left: 50px; top: Opx;}
32 }

Fig. 5.11 | Animation in CSS3. The dotted lines show the diamond
path that the image takes, (Part 2 of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

33 @keyframes movingImage

34 {

35 0% {opacity: 0; left: 50px; top: Opx;}
36 25% {opacity: 1; left: Opx; top: 50px;}
37 50% {opacity: 0; Tleft: 50px; top: 100px;}
38 75% {opacity: 1; left: 100px; top: 50px;}
39 100% {opacity: 0; left: 50px; top: Opx;}
40 }

41 </style>

42 </head>

43 <body>

44 <img src = "jhtp.png” width = "138" height = "180"
45 alt = "Java How to Program book cover':>

46 <div></div>

47 </body>

48 </html>

Fig. 5.11 | Animation in CSS3. The dotted lines show the diamond
path that the image takes, (Part 3 of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

The animation starts and PN
ends at the top of the)
diamond, moving the
image in the
counterclockwise direction
initially. When the
animation reaches the top
of the diamond, the
animation reverses,
continuing in the
clockwise direction. The
animation terminates
when the image reaches
the top of the diamond for
a second time.

Fig. 5.11 | Animation in CSS3. The dotted lines show the diamond
path that the image takes, (Part 4 of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.12 Animation:; Selectors

animation Property

» The animation property allows you to
represent several animation properties in a
shorthand notation, rather than specifying
each separately, as in:

- animation-name: movingImage;
animation-timing-function: linear;
animation-duration: 10s;
animation-delay: 1s;
animation-iteration-count: 2;
animation-direction: alternate;

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.12 Animation; Selectors (cont.)

» In the shorthand notation, the values are listed in the

following order:

> animation-name—represents the name of the animation
(movingImage).

> animation-timing-function—determines how the animation
progresses in one cycle of its duration. Possible values
include 1inear, ease, ease-1in, ease-out, ease-in-out,
cubic-bezier.

- Tinear specifies that the animation will move at the same
speed from start to finish.

- The default value, ease, starts slowly, increases speed, then
ends slowly.

- ease-1n starts slowly, then speeds up, whereas the ease-out
value starts faster, then slows down.

- ease-in-out starts and ends slowly.

* cubic-bezier allows you to customize the timing function with
four values between 0 and 1, such as cubic-bezier(1,0,0,1)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.12 Animation; Selectors (cont.)

° an_imation—duration—saecifies the time in seconds (s) or
milliseconds (ms) that the animation takes to complete one
iteration (10s in this case).

- animation-delay—specifies the number of seconds (1s in
this case) or milliseconds after the page loads before the
animation begins.

° animation-iteration-count—specifies the number of times
the animation will run. You may use the value infinite to
repeat the animation continuously.

- animation-direction—specifies the direction in which the
animation will run. The value alternate used here
specifies that the animation will run in alternating
directions—in this case, counterclockwise (as we define
with our keyframes), then clockwise. The default value,
normal, would run the animation in the same direction for
each cycle.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.12 Animation; Selectors (cont.)

» The shorthand animation property cannot be used with the

animation-play-state property—it must be specified
separately.

» If you do not include the animation-play-state, which

specifies whether the animation is paused or running, it
defaults to running.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.12 Animation; Selectors (cont.)

@keyframes Rule and Selectors
4

The @keyframes rule defines the element’s properties that will change
during the animation, the values to which those properties will change,
and when they’ll change.

The @keyframes rule is followed by the name of the animation
(movingImage) to which the keyframes are applied.

CSS rules consist of one or more selectors followed by a declaration
block in curly braces ({}).

SeIeEtors enable you to apply styles to elements of a particular type or
attribute.

A declaration block consists of one or more declarations, each of which
includes the property name followed by a colon (:), a value and a
semicolon (;).

In this example, the @keyframes rule includes five selectors to represent
the points-in-time for our animation.

You can break down the animation into as many points as you like.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.13 Transitions and Transformations

» With CSS3 transitions, you can change an
element’s style over a specified duration.

» CSS3 transformations allow you to move, rotate,
scale and skew elements.

» Transitions are similar in concept to the
animations, but transitions allow you to specify
only the starting and ending values of the CSS
properties being changed.

» An animation’s keyframes enable you to control
intermediate states throughout the animation’s
duration.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.13.1 transition and transform

Properties

4

Figure 5.12 uses the transition and transform properties to
scale and rotate an image 360 degrees when the cursor
hovers over it.

We begin by defining the transition. For each property that
will change, the transition property specifies the duration of
that change.

We could specify a comma-separated list of property names
that will change and the individual durations over which each
property will change. For example:

- transition: transform 4s, opacity 2s;

indicates that a transform takes four seconds to apply and
the opacity changes over two seconds—thus, the transform
will continue for another two seconds after the opacity
change completes.

In this example, we define the transform only when the user
hovers the mouse over the image.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

1 <!DOCTYPE html>

2

3 <!-- Fig. 5.12: transitions.htm] -->

4 <!-- Transitions in CSS3. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Transitions</title>

9 <style type = "text/css'>

10 img

11 {

12 margin: 80px;

13 -webkit-transition: -webkit-transform 4s;
14 -moz-transition: -moz-transform 4s;
15 -o-transition: -o-transform 4s;

16 transition: transform 4s;

17 }

Fig. 5.12 | Transitioning an image over a four-second duration and
applying rotate and scale transforms. (Part | of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

18 img:hover

19 {

20 -webkit-transform: rotate(360deg) scale(2, 2);
21 -moz-transform: rotate(360deg) scale(2, 2);
22 -o-transform: rotate(360deg) scale(2, 2);

23 transform: rotate(360deg) scale(2, 2);

24 }

25 </style>

26 </head>

27 <body>

28 <img src = "cpphtp.png” width = "76" height = "100"
29 alt = "C++ How to Program book cover"s>

30 </body>

31 </html>

Fig. 5.12 | Transitioning an image over a four-second duration and
applying rotate and scale transforms. (Part 2 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

d)

‘HowlllTIO pnoellml‘
P s Te 80 -lv-A

f

Fig. 5.12 | Transitioning an image over a four-second duration and
applying rotate and scale transforms. (Part 3 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.13.1 transition and transform

Properties (cont.)

4

>

The :hover pseudo-class formerly worked only for anchor
elements but now works with any element.

We use :hover to begin the rotation and scaling of the
image.
The transform property specifies that the image will rotate

360deg and will scale to twice its original width and height
when the mouse hovers over the image.

The transform property uses transformation functions, such
as rotate and scale, to perform the transformations.

The rotate transformation function receives the number of
degrees. Negative values cause the element to rotate left.

The scale transformation function specifies how to scale the
width and height. The value 1 represents the original width or
original height, so values greater than 1 increase the size and
values less than 1 decrease the size.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.13.2 Skew

» CSS3 transformations also allow you to skew block-level
elements, slanting them at an angle either horizontally
(skewX) or vertically (skewy).

» We use the animation and transform properties to skew a
rectangle and text horizontally by 45 degrees (Fig. 5.13).

» First we create a rectangle with a LightGreen background, a
solid DarkGreen border and rounded corners.

» The animation property specifies that the element will skew
in a three-second (3s) interval for an infinite duration.

» The fourth value, Tinear, is the animation-timing-
function.

» Next, we use the @keyframes rule and selectors to specify
the angle of the skew transformation at different intervals.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

1 <!DOCTYPE html>

2

3 <!-- Fig. 5.13: skew.html -->

4 <!-- Skewing and transforming elements in CSS3. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Skew</title>

9 <style type = "text/css''>

10 .skew .textbox

11 {

12 margin-left: 75px;

13 background: Tightgreen;

14 height: 100px;

15 width: 200px;

16 padding: 25px 0;

17 text-align: center;

18 font-size: 250%;

19 border: 3px solid DarkGreen;
20 border-radius: 15px;
21 -webkit-animation: skew 3s infinite Tlinear;
22 -moz-animation: skew 3s infinite linear;
23 animation: skew 3s infinite 1linear;
24 }

Fig. 5.13 | Skewing and transforming elements in CSS3. (Part | of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

25 @-webkit-keyframes skew

26 {

27 from { -webkit-transform: skewX(Odeg); }

28 25% { -webkit-transform: skewX(45deqg); }

29 50% { -webkit-transform: skewX(0); }

30 75% { -webkit-transform: skewX(-45deg); }
31 to { -webkit-transform: skewX(0); }

32 1

33 @-moz-keyframes skew

34 {

35 from { -webkit-transform: skewX(0Odeg); }

36 25% { -webkit-transform: skewX(45deg); }

37 50% { -webkit-transform: skewX(0); }

38 75% { -webkit-transform: skewX(-45deg); }
39 to { -webkit-transform: skewX(0); }

40 }

41 @-keyframes skew

42 {

43 from { -webkit-transform: skewX(Odeg); }

44 25% { -webkit-transform: skewX(45deg); }

45 50% { -webkit-transform: skewX(0); }

46 75% { -webkit-transform: skewX(-45deqg); }
47 to { -webkit-transform: skewX(0); }

48 }

49 </style>

Fig. 5.13 | Skewing and transforming elements in CSS3. (Part 2 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

50 </head>

51 <body>

52 <div class = "box skew">

53 <div class = "textbox">Skewing Text</div>

54 </div>

55 </body>

56 </html>

a) Bordered div at skewed left position b) Bordered div at c) Bordered div at skewed right
centered position position
" N

Skewwmg Skewing Skewing
AL Text lext

. J

Fig. 5.13 | Skewing and transforming elements in CSS3. (Part 3 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

<

5.13.3 Transitioning Between Images

» We can use the transition property to create the visually
beautiful effect of melting one image into another (Fig. 5.14).

» The transition property includes three values. First, we

specify that the transition will occur on the opacity of the
image.

» The second value, 4s, is the transition-duration.

» The third value, ease-1n-out, is the transition-timing-
function.

» Next, we define :hover with an opacity of 0, so when the
cursor hovers over the top image, its opacity becomes fully
transparent, revealing the bottom image directly behind it. We
then add the bottom and top images, placing one directly
behind the other.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 5.14: meltingimages.html -->

4 <!-- Melting one image into another using CSS3. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Melting Images</title>

9 <style type = "text/css''>

10 #cover

11 {

12 position: relative;

13 margin: 0 auto;

14 }

15 #cover 1img

16 {

17 position: absolute;

18 left: 0;

19 -webkit-transition: opacity 4s ease-in-out;
20 transition: opacity 4s ease-in-out;
21 }
22 #cover -1img.top:hover
23 { opacity:0; }
24 </style>

Fig. 5.14 | Melting one image into another using CSS3. (Part | of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

25 </head>

26 <body>
27 <div id = "cover">
28
29
30 </div>
31 </body>
32 </html>
a)

Java. «»

HOW 70 FROGRAM - HOW TO PROGRAM _

\L -~

PAUL DEITELSS
HaRvEY BERE
p’

Fig. 5.14 | Melting one image into another using CSS3. (Part 2 of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.14 Downloading Web Fonts and the
@font-face Rule

>

Using the @font-face rule, you can specify fonts for a
web page, even if they’re not installed on the user's
system.

You can use downloadable fonts to help ensure a
uniform look across client sites.

In Fig. 5.15, we use the Google web font named
“Calligraffitti.”

You can find numerous free, open-source web fonts
at http://www.google.com/webfonts.

Make sure the fonts you get from other sources have
no legal encumbrances.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 5.15: embeddedfonts.html -->

4 <!-- Embedding fonts for use in your web page. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Embedded Fonts</title>

9 <link href = '"http://fonts.googleapis.com/css?family=Calligraffitti’
10 rel = 'stylesheet' type = 'text/css'>

11 <style type = "text/css''>

12 body

13 {

14 font-family: "Calligraffitti”;

15 font-size: 48px;

16 text-shadow: 3px 3px 3px DimGrey;

17 }

18 </style>

19 </head>

Fig. 5.15 | Embedding fonts for use in your web page. (Part | of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

20 <body>

21 <div>

22 Embedding the Google web font "Calligraffitti'
23 </div>

24 </body>

25 </html>

@ Embedded Fonts X

C | © filey///C:/books/2011/IW3HTP5/examples/ch05/ 55 X\

Fig. 5.15 | Embedding fonts for use in your web page. (Part 2 of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.14 Downloading Web Fonts and the
@font-face Rule (cont.)

» To get Google’s Calligraffitti font, go to

http://www.google.com/webfonts and use the search box on the
site to find the font “Calligraffitti.”

» Next, click Quick-use to get the 11nk to the style sheet that contains
the @font-face rule.

» Paste that Tink element into the head section of your document.
The referenced CSS style sheet contains the following CSS rules:

+ @media screen {
@font-face {

font-family: 'cCalligraffitti’';

font-style: normal;

font-weight: normal;

src: local('calligraffiti'), _

url('http://themes.googleusercontent.com/static/fonts/

calligraffitti/vl/vLVN2Y-z65rVulR7 TWdvyKIZAuDcNtpCWuPSaIR0Ie8
.woff'g format('woff');

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.14 Downloading Web Fonts and the
@font-face Rule (cont.)

» The @media screen rule specifies that the
font will be used when the document is
rendered on a computer screen.

» The @font-face rule includes the font-
family (Calligraffitti), font-style
(normal) and font-weight (normal).

» The @font-face rule also includes the
location of the font.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.15 Flexible Box Layout Module and
nth-child Selectors

» Flexible Box Layout Module (FBLM) makes it easy
to align the contents of boxes, change their size,
change their order dynamically, and lay out the
contents in any direction.

» In Fig. 5.16, we create flexible divs for four
programming tips. When the mouse hovers over
one of the divs, the div expands, the text
changes from black to white, the background
color changes and the layout of the text changes.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>
2
3 <!-- Fig. 5.16: fblm.html -->
4 <!-- Flexible Box Layout Module. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Flexible Box Layout Model</title>
9 <link href = "http://fonts.googleapis.com/css?family=Rosario’
10 rel = 'stylesheet' type = 'text/css'>
11 <style type = "text/css''>
12 . flexbox
13 {
14 width: 600px;
15 height: 420px;
16 display: -webkit-box;
17 display: box;
18 -webkit-box-orient: horizontal;
19 box-orient: horizontal;
20 }

Fig. 5.16 | Flexible Box Layout Module. (Part | of 5.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

21 . flexbox > div

22 {

23 -webkit-transition: 1s ease-out;

24 transition: 1ls ease-out;

25 -webkit-border-radius: 10px;

26 border-radius: 10px;

27 border: 2px solid black;

28 width: 120px;

29 margin: 10px -10px 10px Opx;

30 padding: 20px 20px 20px 20px;

31 box-shadow: 10px 10px 10px dimgrey;

32 }

33 .flexbox > div:nth-child(1){ background-color: Tightgrey; }

34 .flexbox > div:nth-child(2){ background-color: Tightgrey; }

35 .flexbox > div:nth-child(3){ background-color: Tlightgrey; }

36 .flexbox > div:nth-child(4){ background-color: Tightgrey; }

37

38 .flexbox > div:hover {

39 width: 200px; color: white; font-weight: bold; }

40 .flexbox > div:nth-child(1l):hover { background-color: royalblue; }
41 .flexbox > div:nth-child(2):hover { background-color: crimson; }
42 .flexbox > div:nth-child(3):hover { background-color: crimson; }
43 .flexbox > div:nth-child(4):hover { background-color: darkgreen; }
44 p { height: 250px; overflow: hidden; font-family: "Rosario" }

45 </style>

Fig. 5.16 | Flexible Box Layout Module. (Part 2 of 5.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

46 </head>

47 <body>

48 <div class = "flexbox">

49 <div>
50 <p>Good Programming Practices call attention to techniques that
51 will help you produce programs that are clearer, more

52 understandable and more maintainable.</p></div>

53 <div>

54 <p>Error-Prevention Tips contain suggestions for exposing bugs
55 and removing them from your programs; many describe aspects of
56 programming that prevent bugs from getting into programs in

57 the first place.</p></div>

58 <div>
59 <p>Common Programming Errors point out the errors that students
60 tend to make frequently. These Common Programming Errors reduce
61 the Tikelihood that you'll make the same mistakes.</p></div>

62 <div><p>Software Engineering Observations

63 highTlight architectural and design issues that affect the

64 construction of software systems, especially large-scale

65 systems.</p></div>

66 </div>

67 </body>

68 </html>

Fig. 5.16 | Flexible Box Layout Module. (Part 3 of 5.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

(©) Flexible Box Layout Model

@ file:///C:/books/2011/IW3HTP5/examples/ch05/fi % B X
ﬁs ﬁ'\]bacigrounda ome offthe text

) Each nested divhasa colorand black text to start

-
Good Error-Prevention Common Software
Programming Tips contain Programming Engineering
Practices call suggestions for Errors point out Observations
attention to exposing bugs the errors that highlight
techniques that and removing students tend to architectural and
will help you them from your make frequently. design issues
produce programs; many These Common that affect the
programs that describe aspects Programming construction of
are clearer, more of programming Errors reduce the software
understandable that prevent bugs likelihood that systems,
and more from getting into you'll make the especially large-
maintainable. programs in the same mistakes. scale systems.

Evcrt alnnn

Fig. 5.16 | Flexible Box Layout Module. (Part 4 of 5.)

Copyright © Pearson, Inc. 2013. All

Rights Reserved.

b) When the mouse hovers over :nth-chi1d(2), the flexbox expands, the background-
color changes to Crimson, the overflow text is revealed and the text changes to a bold

@ Flexible Box Layout Model >

C @ filey///C:/books/2011/IW3HTP5/examples/ch05/fig05_16/fblr vy | (& & & @] B N\

3
Good Error-Prevention Tips Common
Programming contain suggestions for Programming Engineering
Practices call exposing bugs and Errors point out Observations
attention to removing them from your the errors that highlight
techniques that programs; many describe students tend to architectural and
will help you aspects of programming make frequently. design issues
produce that prevent bugs from These Common that affect the
programs that getting into programs in Programming construction of
are clearer, more the first place. Errors reduce the software
understandable likelihood that systems,
and more you'll make the especially large-
maintainable. same mistakes. scale systems.

Fig. 5.16 | Flexible Box Layout Module. (Part 5 of 5.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.15 Flexible Box Layout Module and
:hth-child Selectors (cont.)

» We define a div to which we apply the flexbox CSS
class. That div contains four other divs.

» The flexbox class’s display property is set to the
new CSS3 value box.

» The box-orient property specifies the orientation of
the box layout. The default value is horizontal
(which we specified anyway). You can also use
vertical.

» For the nested divs, we specify a one-second ease-
out transition. This will take effect when these the
:hover pseudo-class style is applied to one of these
divs to expand it.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.15 Flexible Box Layout Module and
:hth-child Selectors (cont.)

snth-child Selectors

4

In CSS3, you can use selectors to easily select
elements to style based on their attributes.

» We use :nth-child selectors to select each of the

>

four div elements in the flexbox div to style.
div:nth-chi11d(1) selects the div element that’s
the first child of its parent and applies the
background-color LightBlue.

Similarly, div:nth-chi1d(2) selects the div
element that’s the second child of its parent,
div:nth-chi1d(3) selects the third child of its
parent, and div:nth-chi1d(4) selects the fourth
child of its parent—each applies a specified
background-color.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.15 Flexible Box Layout Module and
:hth-child Selectors (cont.)

» Next, we define styles that are applied to the
nested div elements when the mouse hovers over
them—the width (200px), color (white) and
font-weight (bold).

» We use :nth-child selectors to specify a new
background color for each nested div.

» Finally, we style the p element—the text within
each div.

» In the output, notice that the text in the second
child element (the Error-Prevention Tips), the
overflow text is hidden. When the mouse hovers
over the element, all of the text is revealed.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.16 Multicolumn Layout

» CSS3 allows you to easily create multicolumn layouts.

» In Figure 5.17, we create a three-column layout by
setting the column-count property to 3 and the
column-gap property (the spacing between columns)
to 30px.

» We then add a thin black line between each column
using the column-rule property.

» When you run this example, try resizing your browser
window. The width of the columns changes to fit the
three-column layout in the browser.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

1 <!DOCTYPE html>

2

3 <!-- Fig. 5.17: multicolumns.htm]l -->
4 <!-- Multicolumn text in CSS3. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Multicolumns</title>

9 <style type = "text/css'>

10 p

11 { margin:0.9em Oem; }

12 .multicolumns

13 {

14 /* setting the number of columns to 3 */
15 -webkit-column-count: 3;
16 -moz-column-count: 3;

17 -o-column-count: 3;

18 column-count: 3;

19 /* setting the space between columns to 30px */
20 -webkit-column-gap: 30px;
21 -moz-column-gap: 30px;
22 -o-column-gap: 30px;
23 column-gap: 30px;

Fig. 5.17 | Multicolumn text in CSS3. (Part | of 5.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

24 /* adding a 1lpx black Tine between each column */

25 -webkit-column-rule: 1px outset black;

26 -moz-column-rule: lpx outset black;

27 -o-column-rule: lpx outset black;

28 column-rule: lpx outset black;

29 }

30 </style>

31 </head>

32 <body>

33 <header>

34 <h1l>Computers, Hardware and Software<hl/>

35 </header>

36 <div class = "multicolumns'>

37 <p>A computer is a device that can perform computations and make
38 logical decisions phenomenally faster than human beings can.
39 Many of today's personal computers can perform billions of

40 calculations in one second—more than a human can perform
41 in a Tifetime. Supercomputers are already performing thousands
42 of trillions (quadrillions) of instructions per second! To put
43 that in perspective, a quadrillion-instruction-per-second

44 computer can perform in one second more than 100,000

45 calculations for every person on the planet! And–these
46 "upper Tlimits" are growing quickly!</p>

47 <p>Computers process data under the control of sets of

48 instructions called computer programs. These programs guide

Fig. 5.17 | Multicolumn text in CSS3. (Part 2 of 5.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

49 the computer through orderly sets of actions specified by

50 people called computer programmers. The programs that run on a
51 computer are referred to as software. In this book, you'll

52 lTearn today's key programming methodology that's enhancing

53 programmer productivity, thereby reducing software-development
54 costs—object-oriented programming.</p>

55 <p>A computer consists of various devices referred to as hardware
56 (e.g., the keyboard, screen, mouse, hard disks, memory, DVDs
57 and processing units). Computing costs are dropping

58 dramatically, owing to rapid developments in hardware and

59 software technologies. Computers that might have filled Tlarge
60 rooms and cost millions of dollars decades ago are now

61 inscribed on silicon chips smaller than a fingernail, costing
62 perhaps a few dollars each. Ironically, silicon is one of the
63 most abundant materials—it's an ingredient in common

64 sand. Silicon-chip technology has made computing so economical
65 that more than a billion general-purpose computers are in use
66 worldwide, and this is expected to double in the next few

67 years.</p>

68 <p>Computer chips (microprocessors) control countless devices.

69 These embedded systems include anti-lock brakes in cars,

70 navigation systems, smart home appliances, home security

71 systems, cell phones and smartphones, robots, intelligent

72 traffic intersections, collision avoidance systems, video game
73 controllers and more. The vast majority of the microprocessors

Fig. 5.17 | Multicolumn text in CSS3. (Part 3 of 5.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

74 produced each year are embedded in devices other than general-

75 purpose computers.</p>

76 <footer>

77 © 2012 by Pearson Education, Inc.
78 A1l Rights Reserved.

79 </footer>

80 </div>

81 </body>

82 </html>

Fig. 5.17 | Multicolumn text in CSS3. (Part 4 of 5.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

@ Multicolumns X

C @ filey///C/books/2011/IW3HTP5/examples/ch05/fig05_17/multicolumns.htm|

w A

A computer is a device that can perform
computations and make logical decisions
phenomenally faster than human beings
can. Many of today's personal
computers can perform billions of
calculations in one second—more than a
human can perform in a lifetime.
Supercomputers are already performing
thousands of trillions (quadrillions) of
instructions per second! To put that in
perspective, a quadrillion-instruction-
per-second computer can perform in
one second more than 100,000
calculations for every person on the
planet! And—these "upper limits" are
growing quickly!

Computers process data under the
control of sets of instructions called
computer programs. These programs
guide the computer through orderly sets
of actions specified by people called

Computers, Hardware and Software

computer programmers. The programs
that run on a computer are referred to as
software. In this book, vou'll learn
today's key programming methodology
that's enhancing programmer
productivity, thereby reducing software-
development costs—object-oriented

programming.

A computer consists of various devices
referred to as hardware (e.g., the
keyboard. screen, mouse, hard disks,
memory, DVDs and processing units).
Computing costs are dropping
dramatically. owing to rapid
developments in hardware and software
technologies. Computers that might have
filled large rooms and cost millions of
dollars decades ago are now inscribed
on silicon chips smaller than a fingernail,
costing perhaps a few dollars each.
Ironically, silicon is one of the most

abundant materials—it's an ingredient in
common sand. Silicon-chip technology
has made computing so economical that
more than a billion general-purpose
computers are in use worldwide. and this
is expected to double in the next few

years.

Computer chips (microprocessors)
control countless devices. These
embedded systems include anti-lock
brakes in cars, navigation systems, smart
home appliances, home security systems,
cell phones and smartphones, robots,
intelligent traffic intersections, collision
avoidance systems, video game
controllers and more. The vast majority
of the microprocessors produced each
year are embedded in devices other than

general- purpose computers.

© 2012 by Pearson Education, Inc.
All Rights Reserved.

P

m

Fig. 5.17 | Multicolumn text in CSS3. (Part 5 of 5.)

Copyright © Pearson, Inc. 2013. All

Rights Reserved.

5.17 Media Queries

» With CSS3 media queries you can determine
the finer attributes of the media on which the
user is viewing the page, such as the /ength
and width of the viewing area on the screen,
to better customize your presentation.

» In Fig. 5.18, we modify the multicolumn
example to alter the numbers of columns and
the rules between columns based on the
screen size of the device on which the page is
viewed.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 5.18: mediaqueries.html -->

4 <!-- Using media queries to reformat a page based on the device width. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Media Queries</title>

9 <style type = "text/css'>

10 p

11 { margin: 0.9em Oem; }

12 /% styles for smartphones with screen widths 480px or smaller */
13 @media handheld and (max-width: 480px),

14 screen and (max-device-width: 480px),

15 screen and (max-width: 480px)

16 {

17 div {

18 -webkit-column-count: 1;

19 column-count: 1; }
20 }

Fig. 5.18 | Using media queries to reformat a page based on the
device width. (Part | of 8.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

21 /% styles for devices with screen widths of 481lpx to 1024px */

22 @media only screen and (min-width: 481px) and
23 (max-width: 1024px)

24 {

25 div {

26 -webkit-column-count: 2;

27 column-count: 2;

28 -webkit-column-gap: 30px;

29 column-gap: 30px;

30 -webkit-column-rule: lpx outset black;
31 column-rule: lpx outset black; }

32 }

33 /* styles for devices with screen widths of 1025px or greater *
34 @media only screen and (min-width: 1025px)
35 {

36 div {

37 -webkit-column-count: 3;

38 column-count: 3;

39 -webkit-column-gap: 30px;

40 column-gap: 30px;

41 -webkit-column-rule: 1lpx outset black;
42 column-rule: lpx outset black; }

43 }

Fig. 5.18 | Using media queries to reformat a page based on the
device width. (Part 2 of 8.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

44 </style>

45 </head>

46 <body>

47 <header>

48 <h1l>Computers, Hardware and Software</hl>

49 </header>

50 <div>

51 <p>A computer 1is a device that can perform computations and make
52 Togical decisions phenomenally faster than human beings can.
53 Many of today's personal computers can perform billions of

54 calculations in one second—more than a human can perform
55 in a lifetime. Supercomputers are already performing thousands
56 of trillions (quadrillions) of instructions per second! To put
57 that in perspective, a quadrillion-instruction-per-second

58 computer can perform in one second more than 100,000

59 calculations for every person on the planet! And–these
60 "upper 1limits" are growing quickly!</p>

61 <p>Computers process data under the control of sets of

62 instructions called computer programs. These programs guide

63 the computer through orderly sets of actions specified by

64 people called computer programmers. The programs that run on a
65 computer are referred to as software. In this book, you'll

66 Tearn today's key programming methodology that's enhancing

Fig. 5.18 | Using media queries to reformat a page based on the
device width. (Part 3 of 8.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

67 programmer productivity, thereby reducing software-development
68 costs—object-oriented programming.</p>

69 <p>A computer consists of various devices referred to as hardware
70 (e.g., the keyboard, screen, mouse, hard disks, memory, DVDs
71 and processing units). Computing costs are dropping

72 dramatically, owing to rapid developments in hardware and

73 software technologies. Computers that might have filled large
74 rooms and cost millions of dollars decades ago are now

75 inscribed on silicon chips smaller than a fingernail, costing
76 perhaps a few dollars each. Ironically, silicon is one of the
77 most abundant materials—it's an ingredient in common

78 sand. Silicon-chip technology has made computing so economical
79 that more than a billion general-purpose computers are in use
80 worldwide, and this 1is expected to double in the next few

81 years.</p>

82 <p>Computer chips (microprocessors) control countless devices.

83 These embedded systems include anti-lock brakes in cars,

84 navigation systems, smart home appliances, home security

85 systems, cell phones and smartphones, robots, intelligent

86 traffic intersections, collision avoidance systems, video game
87 controllers and more. The vast majority of the microprocessors
88 produced each year are embedded in devices other than general-
89 purpose computers.</p>

Fig. 5.18 | Using media queries to reformat a page based on the
device width. (Part 4 of 8.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

90 <footer>

91 © 2012 by Pearson Education, Inc.
92 A1l Rights Reserved.

93 </footer>

94 </div>

95 </body>

96 </html>

Fig. 5.18 | Using media queries to reformat a page based on the
device width. (Part 5 of 8.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

a) Styles for smartphones
with screen widths (®) Media Queries x
480px or smaller C | O filey//C/bo V2| € @ & % a

Computers, Hardware and
Software

A computer is a device that can perform computations and
make logical decisions phenomenally faster than human beings
can. Many of today's personal computers can perform billions
of calculations in one second—more than a human can
perform in a lifetime. Supercomputers are already performing
thousands of trillions (quadrillions) of instructions per second!
To put that in perspective, a quadrillion-instruction-per-second
computer can perform in one second more than 100,000
calculations for every person on the planet! And—these

"upper limits" are growing quickly! .

Fig. 5.18 | Using media queries to reformat a page based on the
device width. (Part 6 of 8.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Fig. 5.18 |

b) Styles for devices with screen widths of 481px to 1024px

@ Media Queries

C | © filey///C:/books/2011/IW3HTPS/exan 1 | €& &X &

A computer is a device that can perform
computations and make logical decisions
phenomenally faster than human beings
can. Many of today's personal computers
can perform billions of calculations in one
second—more than a human can perform
in a lifetime. Supercomputers are already
performing thousands of trillions
(quadrillions) of instructions per second!
To put that in perspective, a quadrillion-
instruction-per-second computer can
perform in one second more than 100,000

Computers, Hardware and Software

memory, DVDs and processing units).
Computing costs are dropping

dramatically, owing to rapid developments

in hardware and software technologies.
Computers that might have filled large
rooms and cost millions of dollars decades
ago are now inscribed on silicon chips
smaller than a fingernail, costing perhaps a
few dollars each. Ironically, silicon is one
of the most abundant materials—it's an
ingredient in common sand. Silicon-chip

-

m

-

Using media queries to reformat a page based on the

device width. (Part 7 of 8.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

c) Styles for devices with screen widths of 1024px or greater

@ Media Queries X

A computer is a device that can perform
computations and make logical decisions
phenomenally faster than human beings can. Many of
today's personal computers can perform billions of
calculations in one second—more than a human can
perform in a lifetime. Supercomputers are already
performing thousands of trillions (quadrillions) of
instructions per second! To put that in perspective, a
quadrillion-instruction-per-second computer can
perform in one second more than 100,000
calculations for every person on the planet! And—
these "upper limits" are growing quickly!

Computers process data under the control of sets of
instructions called computer programs. These
programs guide the computer through orderly sets of
actions specified by people called computer

C|® file:///C:/books/2011/IW3HTP5/examples/ch05/fig05_18/mediaqueries.html tml

Computers, Hardware and Software

programmers. The programs that run on a computer
are referred to as software. In this book, you'll learn
today's key programming methodology that's
enhancing programmer productivity, thereby reducing
software-development costs—object-oriented
programming.

A computer consists of various devices referred to as
hardware (e.g.. the keyboard. screen, mouse, hard
disks, memory, DVDs and processing units).
Computing costs are dropping dramatically, owing to
rapid developments in hardware and software
technologies. Computers that might have filled large
rooms and cost millions of dollars decades ago are
now inscribed on silicon chips smaller than a
fingernail, costing perhaps a few dollars each.
Ironically, silicon is one of the most abundant

w A

materials—it's an ingredient in common sand. Silicon-
chip technology has made computing so economical
that more than a billion general-purpose computers
are in use worldwide, and this is expected to double
in the next few years.

Computer chips (microprocessors) control countless
devices. These embedded systems inchude anti-lock
brakes in cars, navigation systems. smart home
appliances, home security systems, cell phones and
smartphones, robots, intelligent traffic intersections,
collision avoidance systems, video game controllers
and more. The vast majority of the microprocessors
produced each year are embedded in devices other
than general- purpose computers.

© 2012 by Pearson Education, Inc. All Rights
Reserved.

Fig. 5.18 | Using media queries to reformat a page based on the
device width. (Part 8 of 8.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.17 Media Queries (cont.)

@media-Rule

>

>

The @media rule is used to determine the type and size
of device on which the page is rendered.

When the browser looks at the rule, the result is either
true or false. The rule’s styles are applied only if the
result is true.

First, we use the @media rule to determine whether the
page is being rendered on a handheld device (e.g., a
smartphone) with a max-width of 480px, or a device
with a screen that has a max-device-width of 480pXx,
or on a screen having max-width of 480px.

If this is true, we set the column-count to 1—the page
will be rendered in a single column on handheld devices
such as an iPhone or in browser windows that have
been resized to 480px or less.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.17 Media Queries (cont.)

» If the condition of the first @media rule is false, a
second @media rule determines whether the page
is being rendered on devices with a min-width of
481px and a max-width of 1024px.

» If this condition is true, we set the column-count
to 2, the column-gap (the s[:IJace between columns)
to 30px and the column-rule (the vertical line
between the columns) to 1px outset black.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

5.17

Media Queries (cont.)

» If the conditions in the first two @media rules are
false, we use a third @media rule to determine
whether the page is being rendered on devices

wit

n amin-width of 1025px.

» If the condition of this rule is true, we set the

CO’
(lin

umn-count to 3, the column-gap to 30px
es 39-40) and the column-rule to 1px

outset black.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

