JavaScript: Functions

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<>

OBJECTIVES

In this chapter you will:

m Construct programs modularly from small pieces called functions.
m Define new functions.

m Pass information between functions.

m Use simulation techniques based on random number generation.
m Use the new HTML5 audio and video elements

m Use additional global methods.

m See how the visibility of identifiers is limited to specific regions of programs.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

9.1 Introduction
9.2 Program Modules in JavaScript
9.3 Function Definitions

9.3.1 Programmer-Defined Function square
9.3.2 Programmer-Defined Function maximum

9.4 Notes on Programmer-Defined Functions
9.5 Random Number Generation
9.5.1 Scaling and Shifting Random Numbers
9.5.2 Displaying Random Images
9.5.3 Rolling Dice Repeatedly and Displaying Statistics

9.6 Example: Game of Chance; Introducing the HTML5 audio and video
Elements

9.7 Scope Rules
9.8 JavaScript Global Functions
9.9 Recursion

9.10 Recursion vs. lteration

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

9.1 Introduction

» To develop and maintain a large program
= construct it from small, simple pieces
= divide and conquer

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<

<

9.2 Program Modules in JavaScript

» You’ll combine new functions that you write

with prepackaged functions and objects
available in JavaScript

» The prepackaged functions that belong to
JavaScript objects (such as Math. pow,
introduced previously) are called methods.

» JavaScript provides several objects that have

a rich collection of methods for performing
common mathematical calculations, string
manipulations, date and time
manipulations, and manipulations of
collections of data called arrays.

[€

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

9.2 Program Modules in JavaScript

(Cont.)

» You can define programmer-defined functions that

>

perform specific tasks and use them at many

points in a script

= The actual statements defining the function are written only once
and are hidden from other functions

Functions are invoked by writing the name of the
function, followed by a left parenthesis, followed
by a comma-separated list of zero or more
arguments, followed by a right parenthesis

Methods are called in the same way as functions,
but require the name of the object to which the
method belongs and a dot preceding the method
name

Function (and method) arguments may be
constants, variables or expressions

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

boss

SN

workerl worker?2 worker3

/N

worker4 worker5

Fig. 9.1 | Hierarchical boss-function/worker-function relationship.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

9.3.1 Programmer-Defined
Function square

» return statement

= passes information from inside a function back to the point in the
program where it was called

» A function must be called explicitly for the code in
its body to execute

» The format of a function definition is

function function-name(parameter-/ist)

{

declarations and statements

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

(A

v

I <!DOCTYPE html>

2

3 <!-- Fig. 9.2: SquareInt.html -->

4 <!-- Programmer-defined function square. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>A Programmer-Defined square Function</title>

9 <style type = "text/css''>

10 p { margin: 0; }

11 </style>

12 <script>

13

14 document.writeln("<hl>Square the numbers from 1 to 10</hl>");
I5

16 // square the numbers from 1 to 10

17 for (var x = 1; x <= 10; ++x)

18 document.writeln("<p>The square of " + x + " 1is " +
19 square(x) + "</p>");
20

Fig. 9.2 | Programmer-defined function square. (Part | of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

21 // The following square function definition’s body is executed

22 // only when the function is called explicitly as in line 19
23 function square(y)

24 {

25 return y * vy;

26 } // end function square

27

28 </script>

29 </head><body></body> <!-- empty body element -->

30 </html>

Fig. 9.2 | Programmer-defined function square. (Part 2 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

@ A Programmer-Defined s =

C @ filey///C;/books/2011/IW3HTP5/examples/ch10/figl0_02/ 57 A

-

Square the numbers from 1 to 10

The square of 1 is 1

The square of 2 is 4

The square of 3 is 9

The square of 4 is 16
The square of 5 is 25
The square of 6 is 36
The square of 7 1s 49
The square of 8 is 64
The square of 9 is 81
The square of 10 is 100 m

m

14

Fig. 9.2 | Programmer-defined function square. (Part 3 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Common Programming Error 9.1

Forgetting to return a value from a function that’s
supposed to return a value is a logic error.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

9.3.1 Programmer-Defined

Function square (cont.)

» Three ways to return control to the point at
which a function was invoked
= Reaching the function-ending right brace
= Executing the statement return;
= Executing the statement “return expression;” to

return the value of expression to the caller

» When a return statement executes, control
returns immediately to the point at which the
function was invoked

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

(A
v

<

9.3.2 Programmer-Defined

Function maximum (cont.)

» The script in our next example (Fig. 9.3) uses
a programmer-defined function called
maxXimum to determine and return the largest
of three floating-point values.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17
18
19
20
21
22
23

<!DOCTYPE html>

<!-- Fig. 9.3: maximum.html -->
<!-- Programmer-Defined maximum function. -->
<html>

<head>

<meta charset =

"utf-8">

<title>Maximum of Three Values</title>
<style type = "text/css''>
p { margin: 0; }

</style>
<script>

var inputl
var input2
var input3

var valuel =
var value2 =
var value3 =

var maxValue

window.prompt("Enter first number™, "0");
window.prompt("Enter second number", "0");
window.prompt("Enter third number™, "0");

parseFloat(inputl);
parseFloat(input2);
parseFloat(input3);

= maximum(valuel, value2, value3);

Fig. 9.3 | Programmer-defined maximum function. (Part | of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

24 document.writeln("<p>First number: " + valuel + "</p>" +
25 "<p>Second number: " + value2 + "</p>" +

26 "<p>Third number: " + value3 + "</p>" +

27 "<p>Maximum dis: " + maxValue + "</p>");

28

29 // maximum function definition (called from line 22)
30 function maximum(x, y, z)

31 {

32 return Math.max(x, Math.max(C vy, z));

33 } // end function maximum

34

35 </script>

36 </head><body></body>

37 </html>

Fig. 9.3 | Programmer-defined maximum function. (Part 2 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

I

Javascript

Enter first number

299.8

Javascript X

Enter second number
3576

[”] Prevent this page from creating additional dialogs.

[oK] [Cancel]

I

Javascript

Enter third number

906.1

("] Prevent this page from creating additional dialogs.

[oK] [Cancel]

Fig. 9.3 | Programmer-defined maximum function. (Part 3 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

@ Maximum of Three Values ~

C @ filey///C:/books/2011/IW3} 1% @ &4 *n X\

First number: 299 8
Second number: 3576
Third number: 906.1
Maximum is: 3576

Fig. 9.3 | Programmer-defined maximum function. (Part 4 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

9.4 Notes on Programmer—eﬁnea‘J
Functions

» All variables declared with the keyword var in
function definitions are local variables—this means

that they can be accessed only in the function in
which they’re defined.

» A function’s parameters are also considered to be
local variables.

» There are several reasons for modularizing a
program with functions.

= Divide-and-conquer approach makes program
development more manageable.

= Software reusability.
= Avoid repeating code in a program.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

Software Engineering Observation 9.1

If a function’s task cannot be expressed concisely,
perhaps the function is performing too many different
tasks. It’s usually best to break such a function into
several smaller functions.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Common Programming Error 9.2

Redefining a function parameter as a local variable in the
function is a logic error.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Good Programming Practice 9.1

Do not use the same name for an argument passed to a
function and the corresponding parameter in the function
definition. Using different names avoids ambiguity.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 9.2

To promote software reusability, every function should
be limited to performing a single, well-defined task, and
the name of the function should describe that task
effectively. Such functions make programs easier to
write, debug, maintain and modify.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A
v

9.5 Random Number Generation

» random method generates a floating-point value
from 0.0 up to, but notincluding, 1.0

» Random integers in a certain range can be
generated by scaling and shifting the values
returned by random, then using Math.floor to
convert them to Integers
= The scaling factor determines the size of the range (i.e. a scaling

factor of 4 means four possible integers)

= The shift number is added to the result to determine where the
range begins (i.e. shifting the numbers by 3 would give numbers

between 3 and 7)
» Method Math.floor rounds its argument down

to the closest integer

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

<!DOCTYPE html>

<!-- Fig. 9.4: RandomInt.html -->

<!-- Random integers, shifting and scaling. -->
<html>
<head>
<meta charset = "utf-8">
<title>Shifted and Scaled Random Integers</title>
<style type = "text/css''>

p, ol { margin: 0; }

14 { display: inline; margin-right: 10px; }
</style>
<script>

var value;

document.writeln("<p>Random Numbers</p>");

for Cvar i = 1; 1 <= 30; ++i)

{
value = Math.floor(1 + Math.random() * 6);
document.writeln("<1i>" + value + "</1i>");
} // end for

Fig. 9.4 | Random integers, shifting and scaling. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

25 document.writeln("");

26

27 </script>

28 </head><body></body>
29 </html>

(©) Shifted and Scaled Randor (©) Shifted and Scaled Randorn =

C O file:///C:/books/2011/IW3HTP5/ T8 X

[= W
Lh =
—
[o O IS
Fo
(IS I
il)
ST

C' O file:///C:/books/2011/IW3HTPS; ¥

ol
=
Lh Ln
(SIS
=t Lid
[FE R S
(= QL]

Fig. 9.4 | Random integers, shifting and scaling. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<

9.5.2 Displaying Random Images

» In the next example, we build a random image
generator—a script that displays four randomly
selected die images every time the user clicks a
Roll Dice button on the page.

» For the script in Fig. 9.5 to function properly,
the directory containing the file
RolID1ce.htm]l must also contain the six die
images—these are included with this chapter’s
examples.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

I <!DOCTYPE html>

2

3 <«!-- Fig. 9.5: RollDice.htm]l -->

4 <!-- Random dice image generation using Math.random. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Random Dice Images</title>

9 <style type = "text/css''>

10 11 { display: inline; margin-right: 10px; }
11 ul { margin: 0; }
12 </style>
13 <script>
14 // variables used to interact with the i mg elements
15 var dielImage;
16 var die2Image;
17 var die3Image;
18 var die4Image;
19

Fig. 9.5 | Random dice image generation using Math.random. (Part
| of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

20 // register button listener and get the img elements

21 function start()

22 {

23 var button = document.getElementById("rollButton”);
24 button.addEventListener("click”™, rol1lDice, false);
25 dielImage = document.getElementById("diel");

26 die2Image = document.getElementById("die2");

27 die3Image = document.getElementById("die3");

28 die4Image = document.getElementById("died");

29 1 // end function rollDice

30

31 // roll the dice

32 function roll1Dice()

33 {

34 setImage(diellImage);

35 setImage(die2Image);

36 setImage(die3Image);

37 setImage(die4Image);

38 } // end function rollDice

39

Fig. 9.5 | Random dice image generation using Math.random. (Part
2 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

40 // set image source for a die

41 function setImage(dieImg)

42 {

43 var dieValue = Math.floor(1 + Math.random() * 6);
44 dieImg.setAttribute("src”, "die" + dieValue + ".png");
45 dieImg.setAttribute("alt",

46 "die image with " + dieValue + " spot(s)");

47 } // end function setImage

48

49 window.addEventListener("load", start, false);

50 </script>

51 </head>

Fig. 9.5 | Random dice image generation using Math.random. (Part
3 0f4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

52
53
34
35
56
37
58
39
60
61
62
63

<body>

type = "button” value = "Roll Dice">

= "blank.png" alt = "die 1 image'></11i>

= "blank.png" alt = "die 2 image'"></11i>

= "blank.png" alt = "die 3 image"></11>
"blank.png" alt = "die 4 image'></11i>

<form action = "#">
<input id = "rollButton”

</form>

<img id = "diel” src
<img id = "die2" src
<img id = "die3" src
<img id = "died4” src =

</body>
</html>

' @Random DiceImages '“ ' @Random Dice Images '“

C @ filey///C:/books/2011/IWITs A

-

Roll che T

C @ filey///C:/books/2011/IW3 Ty |

Roll che

-~

Fig. 9.5 | Random dice image generation using Math.random. (Part
4 of 4.)

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

9.5.2 Displaying Random Images

User Interactions Via Event Handling

» Until now, all user interactions with scripts have been through
= a prompt dialog or
= an alert dialog.

» These dialogs are valid waxs to receive input from a user and
to display messages, but they’re fairly limited in their
capabilities.

» A prompt dialog can obtain only one value at a time from the
user, and a message dialog can display only one message.

> !cnputs are typically received from the user via an HTMLS5
orm.

» Outputs are typically displayed to the user in the web page.

b Thisiprogram uses an HTML5 form and a new graphical user
interface concept—GUI event handling.

» The JavaScript executes in response to the user’s interaction
with an element in a form. This interaction causes an event.

» Scripts are often used to respond to user initiated events.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

9.5.2 Displaying Random Images

The body Element

» The elements in the body are used extensively
in the script.

The form Element

» The HTMLS5 standard requires that every form
contain an action attribute, but because this
form does not post its information to a web
server, the string "#" is used simply to allow
this document to validate.

» The # symbol by itself represents the current
page.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

(A
v

9.5.2 Displaying Random Images

The button input Element and Event-Driven
Programming

» Event-driven programming

4

» T

P
» T

» T

the user interacts with an element in the web page, the
SCI’Ip{[is notified of the event and the script processes the
event.

ne user’s interaction with the GUI “drives” the
rogram.

ne button click is known as the event.
ne function that’s called when an event occurs is

known as an event handler.

» When a GUI event occurs in a form, the browser
calls the specified event-handling function.

» Before any event can be processed, each element
must know which event-handling function will be

called when a particular event occurs.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

(A

9.5.2 Displaying Random Images

The img Elements

» The four img elements will display the four randomly
selected dice.

» Their 1d attributes (diel, die2, die3 and die4,
respectively) can be used to apply CSS styles and to
enable script code to refer to these element in the

HTML5 document.

» Because the 1d attribute, if specified, must have a
unique value among all id attributes in the page, Java-
Script can reliably refer to any single element via its id
attribute.

» Each 1mg element displays the image blank.png (an
empty white image) when the page first renders.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

9.5.2 Displaying Random Images

Specifying a Function to Call When the Browser Finishes
Loading a Document

» Many examples will execute a JavaScript function when
the document finishes loading.

» This is accomplished by handling the window object’s
load event.

» To specify the function to call when an event occurs,
you registering an event handler for that event.

» Method addEventListener is available for every DOM
node. The method takes three arguments:

4 Lhe gilrst is the name of the event for which we’re registering a
andler

» the second is the function that will be called to handle the
event

» the last argument is typically false—the true value is beyond
this book’s scope

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

9.5.3 Rolling Dice Repeatedly and
Displaying Statistics

» To show that the random values representing the dice
occur with approximately equal likelihood, let’s allow
the user to roll 12 dice at a time and keep statistics
showing the number of times each face occurs and the
percentage of the time each face is rolled (Fig. 9.6).

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

I <!'DOCTYPE html>

2

3 <«!-- Fig. 9.6: RollDice.htm]l -->

4 <!-- Rolling 12 dice and displaying frequencies. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Die Rolling Frequencies</title>

9 <style type = "text/css'>

10 img { margin-right: 10px; }

11 table { width: 200px;

12 border-collapse: collapse;

13 background-color: Tlightblue; }
14 table, td, th { border: 1px solid black;

15 padding: 4px;

16 margin-top: 20px; }

17 th { text-align: left;

18 color: white;

19 background-color: darkblue; }
20 </style>

Fig. 9.6 | Rolling 12 dice and displaying frequencies. (Part | of 9.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

<script>
var frequencyl = 0
var frequency2 = 0
var frequency3 = 0
var frequency4 = 0
var frequency5 = 0
var frequency6 = 0
var totalDice = 0;

// register button event handler
function start()
{
var button = document.getElementById("rollButton”);
button.addEventListener("click"”, rol1Dice, false);
} // end function start

Fig. 9.6 | Rolling 12 dice and displaying frequencies. (Part 2 of 9.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

// roll the dice
function rol1Dice()

{

var face; // face rolled

// loop to roll die 12 times

for Cvar i = 1; 1 <= 12; ++i)

{
face = Math.floor(1 + Math.random() * 6);
tallyRol1s(face); // increment a frequency counter
setImage(i, face); // display appropriate die image
++totalDice; // increment total

} // end die rolling Toop

updateFrequencyTable();
} // end function rol1Dice

Fig. 9.6 | Rolling 12 dice and displaying frequencies. (Part 3 of 9.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

// increment appropriate frequency counter

function tallyRoll1s(face)
{
switch (face)
{
case 1:
++frequencyl;
break;
case 2:
++frequency2;
break;
case 3:
++frequency3;
break;
case 4:
++frequency4;
break;
case 5:
++frequencys5;
break;
case 6:
++frequencyb6;
break;
} // end switch
} // end function tallyRolls

Fig. 9.6 | Rolling 12 dice and displaying frequencies. (Part 4 of 9.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

79
80
81
82
83
84
85
86
87

// set image source for a die

function setImage(dieNumber, face)

{
var dieImg = document.getElementById("die” + dieNumber);
dieImg.setAttribute("src", "die" + face + ".png");
dieImg.setAttribute("alt", "die with " + face + " spot(s)");

} // end function setImage

Fig. 9.6 | Rolling 12 dice and displaying frequencies. (Part 5 of 9.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

88 // update frequency table in the page

89 function updateFrequencyTable()

920 {

91 var tableDiv = document.getElementById("frequencyTableDiv");
92

93 tableDiv.innerHTML = "<table>" +

94 "<caption>Die Rolling Frequencies</caption>" +

95 "<thead><th>Face</th><th>Frequency</th>" +

96 "<th>Percent</th></thead>" +

97 "<thody><tr><td>1l</td><td>" + frequencyl + "</td><td>" +
98 formatPercent(frequencyl / totalDice) + "</td></tr>" +
99 "<tr><td>2</td><td>" + frequency2 + "</td><td>" +

100 formatPercent(frequency2 / totalDice)+ "</td></tr>" +
101 "<tr><td>3</td><td>" + frequency3 + "</td><td>" +

102 formatPercent(frequency3 / totalDice) + "</td></tr>" +
103 "<tr><td>4</td><td>" + frequency4 + "</td><td>" +

104 formatPercent(frequency4 / totalDice) + "</td></tr>" +
105 "<tr><td>5</td><td>" + frequency5 + "</td><td>" +

106 formatPercent(frequency5 / totalDice) + "</td></tr>" +
107 "<tr><td>6</td><td>" + frequency6 + "</td><td>" +

108 formatPercent(frequency6 / totalDice) + "</td></tr>" +
109 "</tbhody></table>";

110 } // end function updateFrequencyTable

111
Fig. 9.6 | Rolling 12 dice and displaying frequencies. (Part 6 of 9.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

112 // format percentage

113 function formatPercent(value)

114 {

115 value *= 100;

116 return value.toFixed(2);

117 } // end function formatPercent

118

119 window.addEventListener("load", start, false);
120 </script>

121 </head>

Fig. 9.6 | Rolling 12 dice and displaying frequencies. (Part 7 of 9.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

122 <body>

123 <p>

124

125

126

127

128 </p>
129 <p>

130

131

132

133

134 </p>
135 <form action = "#">

136 <input 1id = "roll1Button” type = "button” value = "Roll Dice">
137 </form>

138 <div id = "frequencyTableDiv'></div>

139 </body>
140 </html>

Fig. 9.6 | Rolling 12 dice and displaying frequencies. (Part 8 of 9.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

@ Die Rolling Frequencies

C' | O file///C:/books/2011/W3 ¥ | B 52 (§y X
@ o' W% o' .,
@
) - =
L ® @

Die Rolling Frequencies
Face Frequemcy Percent
1 327 16.82
2 324 16.67
3 320 16.46
4 355 18.26
5 316 16.26
6 302 15153

Fig. 9.6 | Rolling 12 dice and displaying frequencies. (Part 9 of 9.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

9.5.3 Rolling Dice Repeatedly and
Displaying Statistics

Generalized Scaling and Shifting of Random Values

» The values returned by random are always in the range
0.0 £ Math.random() < 1.0

» Previously, we demonstrated the statement
face = Math.floor(1 + Math.random() * 6);

» which simulates the rolling of a six-sided die. This statement
always assigns an integer (at random) to variable face, in the
range 1 £ face £ 6.

» Referring to the preceding statement, we see that the width
of the range is determined by the number used to scale
random with the multiplication operator (6 in the preceding
statement) and that the starting number of the range is equal

to the number (1 in the preceding statement) added to
Math.random() * 6.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

9.5.3 Rolling Dice Repeatedly and
Displaying Statistics (cont.)

» We can generalize this result as
face = Math.floor(a + Math.random() * b);

» where a is the shifting value (which is equal to the first
number in the desired range of consecutive integers)
and b is the scaling factor (which is equal to the width
of the desired range of consecutive integers).

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

<>

9.6 Example: Game of Chance; Introducing

the HTMLS5 audio and video Elements
» The script in Fig. 9.7 simulates the game of craps.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

I <!DOCTYPE html>

2

3 <«!-- Fig. 9.7: Craps.html -->

4 <!-- Craps game simulation. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Craps Game Simulation</title>

9 <style type = "text/css'>
10 p.red { color: red }
11 img { width: 54px; height: 54px; }
12 div { border: 5px ridge royalblue;
13 padding: 10px; width: 120px;
14 margin-bottom: 10px; }
15 .point { margin: Opx; }
16 </style>

Fig. 9.7 | Craps game simulation. (Part | of 12.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

17 <script>

18 // variables used to refer to page elements

19 var pointDiellImg; // refers to first die point img
20 var pointDie2Img; // refers to second die point img
21 var rollDielImg; // refers to first die roll img

22 var roll1Die2Img; // refers to second die roll img
23 var messages; // refers to "messages' paragraph

24 var playButton; // refers to Play button

25 var rollButton; // refers to Roll button

26 var dicerolling; // refers to audio clip for dice
27

28 // other variables used in program

29 var myPoint; // point if no win/loss on first roll
30 var dielValue; // value of first die in current roll
31 var die2Value; // value of second die in current roll
32

Fig. 9.7 | Craps game simulation. (Part 2 of 12.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

// starts a new game
function startGame()

{

// get the page elements that we'll interact with
dicerolling = document.getElementById("dicerolling”™);
pointDielImg = document.getElementById("pointDiel"”);
pointDie2Img = document.getElementById("pointDie2");
rol1DielImg = document.getElementById("rollDiel"™);
rol1Die2Img = document.getElementById("rollDie2");
messages = document.getElementById("messages");
playButton = document.getElementById("play”);
rol1Button = document.getElementById("roll");

// prepare the GUI

rol1Button.disabled = true; // disable rollButton
setImage(pointDiellmg); // reset image for new game
setImage(pointDie2Img); // reset image for new game
setImage(rollDiellmg); // reset image for new game
setImage(rollDie2Img); // reset image for new game

myPoint = 0; // there is currently no point
firstRo11(); // roll the dice to start the game

} // end function startGame

Fig. 9.7 | Craps game simulation. (Part 3 of 12.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

57 // perform first roll of the game

58 function firstRol1()

59 {

60 var sumOfDice = roll1Dice(); // first roll of the dice
61

62 // determine if the user won, lost or must continue rolling
63 switch (sumOfDice)

64 {

65 case 7: case 11: // win on first roll

66 messages.innerHTML =

67 "You Win!!! Click Play to play again.";

68 break;

69 case 2: case 3: case 12: // lose on first roll

70 messages.innerHTML =

71 "Sorry. You Lose. Click Play to play again.";
72 break;

73 default: // remember point

74 myPoint = sumOfDice;

75 setImage(pointDielImg, dielValue);

76 setImage(pointDie2Img, die2Value);

77 messages.innerHTML = "Roll Again!™;

78 rolT1Button.disabled = false; // enable roll1Button
79 playButton.disabled = true; // disable playButton
80 break;

81 } // end switch

82 } // end function firstRoll

.

. 9.7 | Craps game simulation. (Part 4 of 12.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

83

84 // called for subsequent rolls of the dice

85 function rollAgain()

86 {

87 var sumOfDice = rollDice(); // subsequent roll of the dice
88

89 if (sumOfDice == myPoint)

90 {

91 messages.innerHTML =

92 "You Win!!! Click Play to play again.";

93 rol1Button.disabled = true; // disable rollButton
94 playButton.disabled = false; // enable playButton
95 } // end if

96 else if (sumOfDice == 7) // craps

97 {

98 messages.innerHTML =

99 "Sorry. You Lose. Click Play to play again.";
100 rol1Button.disabled = true; // disable rollButton
101 playButton.disabled = false; // enable playButton
102 } // end else if

103 } // end function rollAgain

104

Fig. 9.7 | Craps game simulation. (Part 5 of 12.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

105 // roll the dice

106 function roll1Dice()

107 {

108 dicerolling.play(); // play dice rolling sound
109

110 // clear old die images while rolling sound plays
111 dielValue = NaN;

112 die2Value = NaN;

113 showDice();

114

115 dielValue = Math.floor(l + Math.random() * 6);
116 die2Value = Math.floor(l + Math.random() * 6);
117 return dielValue + die2Value;

118 } // end function rollDice

119

Fig. 9.7 | Craps game simulation. (Part 6 of 12.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

120 // display rolled dice

121 function showDice()

122 {

123 setImage(rollDiellmg, dielValue);
124 setImage(rollDie2Img, die2Value);
125 } // end function showDice

126

127 // set image source for a die

128 function setImage(dieImg, dieValue)
129 {

130 if (isFinite(dieValue))

131 dieImg.src = "die" + dievValue + ".png";
132 else

133 dieImg.src = "blank.png";

134 } // end function setImage

135

Fig. 9.7 | Craps game simulation. (Part 7 of 12.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

136 // register event liseners

137 function start()

138 {

139 var playButton = document.getElementById("play”);

140 playButton.addEventListener("click'", startGame, false);
141 var rollButton = document.getETementById("roll");

142 rol1Button.addEventListener("click”™, rollAgain, false);
143 var diceSound = document.getElementById("dicerolling"”);
144 diceSound.addEventListener("ended", showDice, false);
145 } // end function start

146

147 window.addEventListener("load", start, false);

148 </script>

149 </head>
150 <body>

151 <audio id = “dicerolling” preload = "auto'>

152 <source src = "http://test.deitel.com/dicerolling.mp3"
153 type = "audio/mpeg'>

154 <source src = "http://test.deitel.com/dicerolling.ogg"
155 type = "audio/ogg">

156 Browser does not support audio tag</audio>

Fig. 9.7 | Craps game simulation. (Part 8 of 12.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

157 <p>Click here for a short video

158 explaining the basic Craps rules</p>

159 <div id = "pointDiv'>

160 <p class = "point">Point is:</p>

161 <img id = "pointDiel” src = "blank.png"

162 alt = "Die 1 of Point Value">

163 <img id = "pointDie2" src = "blank.png"

164 alt = "Die 2 of Point Value">

165 </div>

166 <div class = "rollDiv">

167 <img id = "rollDiel” src = "blank.png"

168 alt = "Die 1 of Roll Value'>

169 <img id = "rollDie2" src = "blank.png"

170 alt = "Die 2 of Roll Value'>

171 </div>

172 <form action = "#">

173 <input 1id = "play” type = "button” value = "Play'>
174 <input 1id = "roll"” type = "button” value = "Rol1">
175 </form>

176 <p id = "messages” class = "red">Click Play to start the game</p>

177 </body>
178 </html>

Fig. 9.7 | Craps game simulation. (Part 9 of 12.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

a) Win on the first roll. In this case, the pointDiv b) Loss on the first roll. In this case, the pointDiv

does not show any dice and the Roll button does not show any dice and the Roll button
C O file///C/books/20 Ve @A B2 (4 X C O file///C/books/20 Ve A 52 [y X

Click here for a short video explaining the basic Craps rules | | Click here for a short video explaining the basic Craps rules | |

Point is: Point is:

m

m

o -~
CRER] (C R
L
'
o0 L

Roll Roll |

You Win!!! Click Play to play again.

Sorry. You Lose. Click Play to play again.

1
1

Fig. 9.7 | Craps game simulation. (Part 10 of 12.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

c) First roll is a 5. so the user’s point is 5. The Play d) User won on a subsequent roll. The Play button

button is disabled and the Roll button is enabled. is enabled and the Roll button is disabled.
C @ filey///C:/books/20 T M &N\ C' | © file///C:/books/20 v5 | @A VRN
Click here for a short video explaining the basic Craps rules | Click here for a short video explaining the basic Craps rules I
Point is: Point is:

- -~

@ | |

a ﬁ
- L J

p - -
. L J

m
m

oy)
Roll Again! il You Win!!! Click Play to play again.

4
4

Fig. 9.7 | Craps game simulation. (Part | | of 12.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

e) First roll is a 6, so the user’s point is 6. The Play
button is disabled and the Roll button is enabled.

(©) Craps Game Simulation X

C' O file///C/books/20 Ve @A 52 (8§ X

Click here for a short video explaining the basic Craps rules | |

Point is:
P
@ @
L] 9
-~ -~
D
* »
» ®

| Play |

Roll Again!]

m

4

f) User lost on a subsequent roll. The Play button
is enabled and the Roll button is disabled.

(©) Craps Game Simulation X

C O file///C:/books/20 Ve A 52 [y X

Click here for a short video explaining the basic Craps rules | |

Point is:

- -~
¢ .. ' .. '
L J L

| Rollt}

m

Sorry. You Lose. Click Play to play again.

1

Fig. 9.7 | Craps game simulation. (Part 12 of 12.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<

9.6 Example: Game of Chance; Introducing
the HTMLS5 audio and video Elements (Cont.)

The HTML5 audio Element

» An HTMLS5 audio element is used to embed
audio into a web page.

» We specify an 1d for the element, so that we
can programmatically control when the audio
clip plays, based on the user’s interactions
with the game.

» Setting the preload attribute to "auto"
indicates to the browser that it should
consider downloading the audio clip so that

it’s ready to be played when the game needs

it.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

9.6 Example: Game of Chance; Introducing
the HTMLS5 audio and video Elements (Cont.)

» Most browsers support MP3, OGG and/or WAV
format.

» Each source element specifies a src and a type

attribute.

= The src attribute specifies the location of the audio clip.

= The type attribute specifies the clip’s MIME type—
audio/mpeg for the MP3 clip and audio/ogg for the OGG
clip (WAV would be audio/x-wav; MIME types for these and
other formats can be found online).

» When a web browser that supports the audio
element encounters the source elements, it will
chose the first audio source that represents one of
the browser’s supported formats.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<

v

Software Engineering Observation 9.3

Variables declared inside the body of a function are
known only in that function. If the same variable names
are used elsewhere in the program, they’ll be entirely
separate variables in memory.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Error-Prevention Tip 9.1

Initializing variables when they’re declared in functions
helps avoid incorrect results and interpreter messages
warning of uninitialized data.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

9.6 Example: Game of Chance; Introducing
the HTMLS5 audio and video Elements (Cont.)

CrapsRules.html and the HMTL5 video Element

» When the user clicks the hyperlink in Craps.html,
the CrapsRules.html is displayed in the browser.

» This page consists of a link back to Craps.html
(Fig. 9.8) and an HTMLS5 video element that

displays a video explaining the basic rules for the
game of Craps.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<

v

I <!'DOCTYPE html>

2

3 <«!-- Fig. 9.8: CrapsRules.html -->

4 <!-- Web page with a video of the basic rules for the dice game Craps. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Craps Rules</title>

9 </head>

10 <body>

11 <p>Back to Craps Game</p>

12 <video controls>

13 <source src = "CrapsRules.mp4” type = "video/mp4">

14 <source src = "CrapsRules.webm” type = "video/webm">

15 A player rolls two dice. Each die has six faces that contain
16 one, two, three, four, five and six spots, respectively. The

Fig. 9.8 | Web page that displays a video of the basic rules for the
dice game Craps. (Part | of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

17 sum of the spots on the two upward faces is calculated. If the

18 sum is 7 or 11 on the first throw, the player wins. If the sum
19 is 2, 3 or 12 on the first throw (called "craps"), the player
20 loses (i.e., the "house" wins). If the sum is 4, 5, 6, 8, 9 or
21 10 on the first throw, that sum becomes the player’s "point."
22 To win, you must continue rolling the dice until you "make your
23 point” (i.e., roll your point value). You lose by rolling a 7
24 before making the point.

25 </video>

26 </body>

27 </html>

Fig. 9.8 | Web page that displays a video of the basic rules for the
dice game Craps. (Part 2 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(©) Craps Rules x

- C @ filey///C/books/2011/IW3HTP5/examples/ch10/fig10_07_08/CrapsRules.html w @ &2 "ﬁ X
Back to Craps Game Tl
| & 00~ 2 - 4 Saeeniots - b | |44 view Optians - X Close

Basic Rules for the Dice Game craps

On the first roll, you win with any combination of dice that
totals 7 (shown in green), you lose with any combination of
dice that totals 2, 3 or 12 (shown in red) and any other total (4,
5,6,8,9 or 10; shown in gray) becomes your “point” and the
game continues.

Fig. 9.8 | Web page that displays a video of the basic rules for the
ice game Craps. (Part 3 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

9.7 Scope Rules

» Each identifier in a program has a scope

» The scope of an identifier for a variable or
function is the portion of the program in
which the identifier can be referenced

» Global variables or script-level variables are

accessible in any part of a script and are said
to have global scope

= Thus every function in the script can potentially use
the variables

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

9.7 Scope Rules (Cont.)

» ldentifiers declared inside a function have

function (or local) scope and can be used
only in that function

» Function scope begins with the opening left
brace ({) of the function in which the
identifier is declared and ends at the
terminating right brace (})

» Local variables of a function and function
narameters have function scope

» If a local variable in a function has the same
name as a global variable, the global
variable is “hidden” from the body of the
function.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

Good Programming Practice 9.2

Avoid local-variable names that hide global-variable
names. This can be accomplished by simply avoiding the
use of duplicate identifiers 1n a script.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 9.9: scoping.html -->

4 <!-- Scoping example. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Scoping Example</title>
9 <style type = "text/css''>

10 p { margin: Opx; }

11 p.space { margin-top: 10px; }
12 </style>

Fig. 9.9 | Scoping example. (Part | of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

13 <script>

14 var output; // stores the string to display

I5 var x = 1; // global variable

16

17 function start()

18 {

19 var x = 5; // variable local to function start

20

21 output = "<p>local x 1in start is " + x + "</p>";

22

23 functionA(); // functionA has local x

24 functionB(); // functionB uses global variable x

25 functionA(); // functionA reinitializes local x

26 functionB(); // global variable x retains its value

27

28 output += "<p class="space'>local x in start is " + X +
29 l|'</p>|l ;

30 document.getElementById("results").innerHTML = output;
31 } // end function start

32

Fig. 9.9 | Scoping example. (Part 2 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

33 function functionA()

34 {

35 var x = 25; // initialized each time functionA is called
36

37 output += "<p class='space'>local x in functionA is " + x +
38 " after entering functionA</p>";

39 ++X;

40 output += "<p>local x 1in functionA is " + X +

41 " before exiting functionA</p>";

42 } // end functionA

43

44 function functionB()

45 {

46 output += "<p class='space'>global variable x is " + x +
47 " on entering functionB";

48 x *= 10;

49 output += "<p>global variable x is " + x +

50 " on exiting functionB</p>";

51 } // end functionB

52

53 window.addEventListener("load", start, false);

54 </script>

55 </head>

Fig. 9.9 | Scoping example. (Part 3 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

56 <body>

57 <div id = "results"></div>
58 </body>
59 </html>

' @ Scoping Example = I“

C Ofile///C/bool vy A B2 & A

local x in start is 5

local x in functionA is 25 after entering functionA
local x in functionA is 26 before exiting functionA

global variable x is 1 on entering functionB
global variable x is 10 on exiting functionB

local x in functionA is 25 after entering functionA
local x in functionA is 26 before exiting function4

global variable x is 10 on entering functionB
global variable x is 100 on exiting functionB

local x in start is 5

Fig. 9.9 | Scoping example. (Part 4 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<

9.8 JavaScript Global Functions

» JavaScript provides nine global functions as
part of a Global object

» This object contains
= all the global variables in the script
= all the user-defined functions in the script
= all the built-in global functions listed in the
following slide
» You do not need to use the Global object
directly; JavaScript uses it for you

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

Global

function Description

isFinite Takes a numeric argument and returns true if the value of the argument
is not NaN, Number.POSITIVE_INFINITY or Number.NEGATIVE_INFINITY
(values that are not numbers or numbers outside the range that JavaScript
supports)—otherwise, the function returns false.

isNaN Takes a numeric argument and returns true if the value of the argument
is not a number; otherwise, it returns false. The function is commonly
used with the return value of parselInt or parseFloat to determine
whether the result is a proper numeric value.

parseFloat Takes a string argument and attempts to convert the beginning of the
string into a floating-point value. If the conversion is unsuccessful, the
function returns NaN; otherwise, it returns the converted value (e.g.,
parseFloat("abc123.45") returns NaN, and parseFloat("123.45abc")
returns the value 123.45).

Fig. 9.10 | JavaScript global functions. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Global

function Description

parseInt Takes a string argument and attempts to convert the beginning of the
string into an integer value. If the conversion is unsuccessful, the func-
tion returns NaN; otherwise, it returns the converted value (for example,
parseInt("abc123") returns NaN, and parseInt("123abc") returns the
integer value 123). This function takes an optional second argument,
from 2 to 36, specifying the radix (or base) of the number. Base 2 indi-
cates that the first argument string is in binary format, base 8 that it’s in
octal format and base 16 that it’s in hexadecimal format. See
Appendix E, for more information on binary, octal and hexadecimal
numbers.

Fig. 9.10 | JavaScript global functions. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A
v

9.9 Recursion

» A recursive function calls itself, either directly, or
indirectly through another function.

» A recursive function knows how to solve only the
simplest case, or base case
= If the function is called with a base case, it returns a result

= |If the function is called with a more complex problem, it divides

the problem into two conceptual pieces—a piece that the function

knows how to process (the base case) and a simpler or smaller
version of the original problem.

» The function invokes (calls) a fresh copy of itself to
go to work on the smaller problem; this invocation

is referred to as a recursive call, or the recursion
step.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<
9.10 Recursion (Cont.)

» The recursion step executes while the original call

to the function is still open (i.e., it has not finished
executing)

» For recursion eventually to terminate, each time the
function calls itself with a simpler version of the
original problem, the sequence of smaller and

smaller problems must converge on the base case

= At that point, the function recognizes the base case, returns a
result to the previous copy of the function, and a sequence of
returns ensues up the line until the original function call
eventually returns the final result to the caller

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

Final value = 120
5!

l

T 51 =5%*24=120is returned
5 % 4]

5 % 41

T Al =4* 6 =24is returned
4 * 31

4 * 3

T 3l=3*2=06isreturned
g = 21
2

!
1

(a) Sequence of recursive calls.

3 = 2l
T 20 =2* 1 =2is returned
2 * 11

T | is returned
1

(b) Values returned from each recursive call.

Fig. 9.11 | Recursive evaluation of 5!.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

I <!'DOCTYPE html>

2

3 «!-- Fig. 9.12: FactorialTest.html -->

4 <!-- Factorial calculation with a recursive function. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Recursive Factorial Function</title>

9 <style type = "text/css''>

10 p { margin: Opx; }

11 </style>

12 <script>

13 var output = ""; // stores the output

14

I5 // calculates factorials of 0 - 10

16 function calculateFactorials()

17 {

F:] for Cvar i = 0; 1 <= 10; ++i)

19 output += "<p>" + i + "! =" + factorial(i) + "</p>";
20
21 document.getElementById("results").innerHTML = output;
22 } // end function calculateFactorials
23

Fig. 9.12 | Factorial calculation with a recursive function. (Part | of
3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

24 // Recursive definition of function factorial

25 function factorial(number)

26 {

27 if (number <=1) // base case

28 return 1;

29 else

30 return number * factorial(number - 1);
31 } // end function factorial

32

33 window.addEventListener("load", calculateFactorials, false);
34 </script>

35 </head>

36 <body>

37 <hl>Factorials of 0 to 10</hl>

38 <div id = "results"></div>

39 </body>

40 </html>

Fig. 9.12 | Factorial calculation with a recursive function. (Part 2 of
3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

' () Recursive Factorial Functior » '“

C ©file///C/oookvs A B2 & N

-~

Factorials of 0 to 10

0r=1
=1
21=2
31=6
H1=24
51=120

6! =720

71 = 5040
81 = 40320
91 = 362880
10! = 3628800 o

4

Fig. 9.12 | Factorial calculation with a recursive function. (Part 3 of
3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Common Programming Error 9.3

Omitting the base case and writing the recursion step
incorrectly so that it does not converge on the base case
are both errors that cause infinite recursion, eventually
exhausting memory. This situation is analogous to the
problem of an infinite loop in an iterative (non-recursive)

solution.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Error-Prevention Tip 9.2

ﬁ Internet Explorer displays an error message when a
script seems to be going into infinite recursion. Firefox
simply terminates the script after detecting the problem.
This allows the user of the web page to recover from a
script that contains an infinite loop or infinite recursion.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<«
9.10 Recursion vs. lteration

» Both iteration and recursion involve repetition

= |teration explicitly uses a repetition statement

= Recursion achieves repetition through repeated
function calls

» Iteration and recursion each involve a
termination test

= |teration terminates when the loop-continuation
condition fails

= Recursion terminates when a base case is
recognized

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

(A

9.11 Recursion vs. lteration

» Iteration both with counter-controlled repetition

and recursion gradually approach termination

= |teration keeps modifying a counter until the counter assumes a
value that makes the loop-continuation condition fail

= Recursion keeps producing simpler versions of the original
problem until the base case is reached

» Both iteration and recursion can occur infinitely:

= An infinite loop occurs with iteration if the loop-
continuation test never becomes false;

= infinite recursion occurs if the recursion step does not
reduce the problem each time via a sequence that
converges on the base case or if the base case is incorrect.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

Software Engineering Observation 9.4

Any problem that can be solved recursively can also be
solved iteratively (non-recursively). A recursive
approach is normally chosen in preference to an iterative
approach when the recursive approach more naturally
mirrors the problem and results in a program that’s easier
to understand and debug. Another reason to choose a
recursive solution is that an iterative solution may not be
apparent.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Performance Tip 9.1

Avoid using recursion in performance-critical situations.
Recursive calls take time and consume additional

memory.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

