10

JavaScript: Arrays

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>

OBJECTIVES
In this chapter you'll:

m Declare arrays, initialize arrays and refer to individual elements of arrays.
m Store lists and tables of values in arrays.

m Pass arrays to functions.

m Search and sort arrays.

m Declare and manipulate multidimensional arrays.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

10.1 Introduction

10.2 Arrays

10.3 Declaring and Allocating Arrays

10.4 Examples Using Arrays
10.4.1 Creating, Initializing and Growing Arrays
10.4.2 Initializing Arrays with Initializer Lists

10.4.3 Summing the Elements of an Array with for and for...in
10.4.4 Using the Elements of an Array as Counters

10.5 Random Image Generator Using Arrays

10.6 References and Reference Parameters

10.7 Passing Arrays to Functions

10.8 Sorting Arrays with Array Method sort

10.9 Searching Arrays with Array Method indexof

10.10 Multidimensional Arrays

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

10.1 Introduction

» Arrays
= Data structures consisting of related data items

» JavaScript arrays

= “dynamic” entities that can change size after they
are created

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<

(A

10.2 Arrays

» An array is a group of memory locations

= All have the same name and normally are of the
same type (although this attribute is not required in
JavaScript)

» Each individual location is called an element

» We may refer to any one of these elements by
giving the array’s name followed by the
position number of the element in square
brackets ([])

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

(A

10.2 Arrays (Cont.)

» The first element in every array is the zeroth
element.

» The ith element of array c is referred to as c[1-1].
Array names follow the same conventions as other
identifiers

A subscripted array name

= cah be used on the left side of an assignment to place a new value
into an array element

= can be used on the right side of an assignment operation to use
its value

Every array in JavaScript knows its own length,
which it stores in its length attribute and can be
found with the expression arrayname.length

v

v

v

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

Position number of the
element within the array c

Name of an individual ———»
array element

cl
cl
cl
cl
cl
c[
cl
cl
cl
el

W 00 N O v AW N = O

c[10
c[11

| e S "= SN D == e S D Sy S|

Name of the array is ¢

-45

6

0

72

1543 +-— Value of array

-89 element c[4]

0

62

-3

i

6453

78

Fig. 10.1 | Array with 12 elements.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Operators Associativity Type

O I . left to right highest
L right to left unary
/% left to right multiplicative
+ - left to right additive

< <= > >= left to right relational

== = left to right equality

&& left to right logical AND

| | left to right logical OR

ik right to left conditional

= 4= -= *= [= %= right to left assighment

Fig. 10.2 | Precedence and associativity of the operators discussed
so far.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A

10.3 Declaring and Allocating
Arrays

» JavaScript arrays are Array objects.

» You use the new operator to create an array
and to specify the number of elements in an
array.

» The new operator creates an object as the
script executes by obtaining enough memory
to store an object of the type specified to the
right of new .

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

(A
v

10.4 Examples Using Arrays

» Zero-based counting is usually used to
iterate through arrays

» JavaScript reallocates an Array when a value
is assigned to an element that is outside the
bounds of the original Array

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 10

Software Engineering Observation 10.1

It’s considered good practice to separate your JavaScript
scripts into separate files so that they can be reused in
multiple web pages.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

11

I <!DOCTYPE html>

2

3 <«!-- Fig. 10.3: InitArray.html -->

4 <!-- Web page for showing the results of initializing arrays. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Initializing an Array</title>

9 <link rel = "stylesheet" type = "text/css" href = "tablestyle.css">
10 <script src = "InitArray.js''></script>

11 </head>

12 <body>

13 <div id = "outputl'></div>

14 <div id = "output2'></div>

15 </body>

16 </html>

Fig. 10.3 | Web page for showing the results of initializing arrays.
(Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

' O Initializing an Array iﬁ

C Ofile///Cve @ 52 & N

Array nl:

Index Value
0 0

1 1

2 2

3 3

4 4
Array n2:

Index Value
0 0

1 1

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

13

I // Fig. 10.4: InitArray.js

2 // Create two arrays, initialize their elements and display them

3 function start()

4 {

5 var nl = new Array(5); // allocate five-element array

6 var n2 = new Array(); // allocate empty array

7

8 // assign values to each element of array nl

9 var length = nl.Tlength; // get array's length once before the Toop
10

11 for (var i = 0; i < Tength; ++i)

12 {

13 nl[i] = i;

14 } // end for

I5

16 // create and initialize five elements in array n2

17 for (i =0; 1 <5; ++1)

I8 {

19 n2[1] = 1;
20 } // end for
21
22 outputArray("Array nl:", nl, document.getElementById("outputl”));
23 outputArray("Array n2:", n2, document.getElementById("output2™));

24 1} // end function start

Fig. 10.4 | Create two arrays, initialize their elements and display
. (Part 1 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 14

25

26 // output the heading followed by a two-column table
27 // containing indices and elements of "theArray"

28 function outputArray(heading, theArray, output)

29 {

30 var content = "<h2>" + heading + "</h2><table>" +

31 "<thead><th>Index</th><th>Value</th></thead><tbhody>";

32

33 // output the index and value of each array element

34 var length = theArray.length; // get array’'s length once before Tloop
35

36 for (var i = 0; i < Tength; ++i)

37 {

38 content += "<tr><td>" + i + "</td><td>" + theArray[i] +

39 "</td></tr>";

40 } // end for

41

42 content += "</tbody></table>";

43 output.innerHTML = content; // place the table in the output element
44 } // end function outputArray

45

46 window.addEventListener("load", start, false);

Fig. 10.4 | Create two arrays, initialize their elements and display
them. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 10.2

JavaScript automatically reallocates an array when a
value is assigned to an element that’s outside the bounds
of the array. Elements between the last element of the
original array and the new element are undefined.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

16

Error-Prevention Tip 10.1

When accessing array elements, the index values should
never go below 0 and should be less than the number of
elements in the array (i.e., one less than the array’s size),
unless it’s your explicit intent to grow the array by
assigning a value to a nonexistent element.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

17

(A
v

10.4 Examples Using Arrays
(Cont.)

Using an Initializer List

» Arrays can be created using a comma-
separated initializer list enclosed in square
brackets ([])

= The array’s size is determined by the number of
values in the initializer list

» The initial values of an array can be specified
as arguments in the parentheses following
new Array

= The size of the array is determined by the number
of values in parentheses

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 18

v

10.4.2 Initializing Arrays with =
Initializer Lists

» The example in Figs. 10.5-10.6 creates three

Array objects to demonstrate initializing
arrays with initializer lists.

» Figure 10.5 is nearly identical to Fig. 10.3 but
provides three divs in its body element for
displaying this example’s arrays.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 19

I <!DOCTYPE html>

2

3 «!-- Fig. 10.5: InitArray2.html -->

4 <!-- Web page for showing the results of initializing arrays. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Initializing an Array</title>

9 <link rel = "stylesheet”" type = "text/css" href = "tablestyle.css'">
10 <script src = "InitArray2.js'></script>

11 </head>

12 <body>

13 <div id = "outputl'></div>

14 <div id = "output2'></div>

15 <div 1id = "output3d'></div>

16 </body>

17 </html>

Fig. 10.5 | Web page for showing the results of initializing arrays.
(Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

O Initializing an Array

C Ofiley//(y @y = QA

J

Array colors contains

0 cyan

1 magenta
2 yellow

3 black

Array integers1 contains

0 2
1 4
2 6
3 8

0 2
1 undefined
2 undefined
3 8

Fig. 10.5 | Web page for showing the results of initializing arrays.

7 A~AfN N\

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

VoO~NONNDE WN =

17
18

// Fig. 10.6: InitArray2.js

// Initializing arrays with initializer Tists.

function start()

{

// Initializer Tist specifies the number of elements and

// a value for each element.

var colors = new Array("cyan", "magenta","yellow", "black");

var integersl = [2, 4, 6, 8];
var integers2 = [2, , , 8 1;

outputArray("Array colors contains', colors,
document.getElementById("outputl™));

outputArray("Array integersl contains', integersl,
document.getElementById("output2™));

outputArray("Array 1integers2 contains', integers2,
document.getElementById("output3™));

} // end function start

Fig. 10.6 | Initializing arrays with initializer lists. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

22

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

// output the heading followed by a two-column table
// containing indices and elements of "theArray"
function outputArray(heading, theArray, output)
{
var content = "<h2>" + heading + "</h2><table>" +
"<thead><th>Index</th><th>Value</th></thead><tbody>";

// output the index and value of each array element
var length = theArray.length; // get array's length once before Toop

for (var i = 0; i < Tength; ++i)

{
content += "<tr><td>" + i + "</td><td>" + theArray[i] +
"</td></tr>";
} // end for

content += "</tbody></table>";
output.innerHTML = content; // place the table in the output element
} // end function outputArray

window.addEventListener("load", start, false);

Fig. 10.6 | Initializing arrays with initializer lists. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

23

v

10.4.3 Summing the Elements of
an Array with for and for..1n

» The example in Figs. 10.7-10.8 sums an array’s
elements and displays the results.

» The document in Fig. 10.7 shows the results of the
script in Fig. 10.8.

» JavaScript’s for..1n Repetition Statement
= Enables a script to perform a task for each element in an array

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 24

I <!DOCTYPE html>

2

3 <«!-- Fig. 10.7: SumArray.html -->

4 <!-- HTMLS5 document that displays the sum of an array's elements. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Sum Array Elements</title>

9 <script src = "SumArray.js''></script>
10 </head>
11 <body>
12 <div id = "output'></div>
13 </body>
14 </html>

Fig. 10.7 | HTML5 document that displays the sum of an array's
elements.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

I // Fig. 10.8: SumArray.js

2 // Summing the elements of an array with for and for...in

3 function start()

4 {

5 var theArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

6 var totall = 0, total2 = 0;

7

8 // iterates through the elements of the array in order and adds
9 // each element's value to totall
10 var length = theArray.length; // get array's length once before Toop
11
12 for (var i = 0; i < length; ++i)
13 {
14 totall += theArray[i];
I5 } // end for
16
17 var results = "<p>Total using indices: " + totall + "</p>";
I8

Fig. 10.8 | Summing the elements of an array with for and for...1in.
(Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

When iterating over all the elements of an array, use a
for...1n statement to ensure that you manipulate only
the existing elements. The for...1n statement skips any
undefined elements in the array.

@ Error-Prevention Tip 10.2

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 27

19
20
21
22
23
24
25
26
27
28
29
30

// iterates through the elements of the array using a for... in
// statement to add each element's value to total2
for (var element in theArray)

{
total2 += theArray[element];
} // end for
results += "<p>Total using for...in: " + total2 + "</p>";

document.getETementById("output”™).innerHTML = results;
} // end function start

window.addEventListener("load", start, false);

' @ Sum Array Elements » '“

C Ofile///(ve @ =2 & N

Total using indices: 55

M| »

Total using for._in: 55

4

Fig. 10.8 | Summing the elements of an array with for and for...1in.
(Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

28

<

v

10.4.4 Using the Elements of an
Array as Counters

» The example in Section 9.5.3 allowed the user to
roll 12 dice at a time and kept statistics showing
the number of times and the percentage of the
time each face occurred.

» An array version of this example is shown in Figs.
10.9-10.10.

» We divided the example into three files

= style.css contains the styles (not shown here),

= Rol1Dice.html (Fig. 10.9) contains the HTML5 document
and

= RolIDice.js (Fig. 10.10) contains the JavaScript.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 29

I <!DOCTYPE html>

2

3 <!-- Fig. 10.9: Roll1Dice.html -->

4 <!-- HTML5 document for the dice-rolling example. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Rol1 a Six-Sided Die 6000000 Times</title>

9 <link rel = "stylesheet” type = "text/css" href = "style.css">
10 <script src = "RollDice.js"></script>
11 </head>
12 <body>
13 <p>
14
I5
16
17
I8 </p>

Fig. 10.9 | HTML5 document for the dice-rolling example. (Part | of
3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

19
20
21
22
23
24
25
26
27
28
29
30

<p>

</p>

<form action = "#">
<input 1id = "rollButton” type = "button” value = "Roll Dice">

</form>

<div 1id = "frequencyTableDiv'></div>

</body>
</html>

Fig. 10.9 | HTML5 document for the dice-rolling example. (Part 2 of
3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

31

@ Die Rolling Frequencies »

C O file:///C:/books/2011/IW3HTPS, v¢ @] () ':b Q[
- - El
= -
L r
L L

Die Rolling Frequencies
Face Frequency Percent
1 249 17.89
1 218 15.66
1 244 17.53
1 223 15.95
1 223 16.02
1 236 16.95

ig. 10.9 | HTMLS document for the dice-rolling example. (Part 3 of

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

32

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17
18
19

// Fig. 10.10: Roll1Dice.js

// Summarizing die-rolling frequencies with an array instead of a switch
var frequency [,0,0,0,0,0,01]; // frequency[0] uninitialized
var totalDice 0;
var dielmages = new Array(12); // array to store img elements

// get die img elements

function start()

{
var button = document.getElementById(“rollButton™);
button.addEventListener("click”, rol1Dice, false);
var length = dieImages.length; // get array's length once before Tloop

for (var i = 0; i < length; ++i)
{
dieImages[i] = document.getElementById("die”™ + (i + 1));
} // end for
} // end function start

Fig. 10.10 | Summarizing die-rolling frequencies with an array
instead of a switch. (Part | of 5.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

33

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

// roll the dice
function roll1Dice()

{
var face; // face rolled
var length = dieImages.length;

for (var i = 0; i < Tength; ++i)

{
face = Math.floor(1 + Math.random() * 6);
tallyRo11s(face); // increment a frequency counter
setImage(i, face); // display appropriate die image
++totalDice; // increment total

} // end for

updateFrequencyTable();
} // end function rollDice

// increment appropriate frequency counter
function tallyRoll1s(face)
{
++frequency[face]; // increment appropriate counte
} // end function tallyRolls

Fig. 10.10 | Summarizing die-rolling frequencies with an array
instead of a switch. (Part 2 of 5.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

34

43 // set image source for a die
44 function setImage(dieImg)

45 {

46 dieImages[dieNumber].setAttribute(
47 dieImages[dieNumber].setAttribute(
48 "die with " + face + " spot(s)");
49 1} // end function setImage

50

"src", "die" + face + ".png");

lla'l t'll ,

Fig. 10.10 | Summarizing die-rolling frequencies with an array
instead of a switch. (Part 3 of 5.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

35

51 // update frequency table in the page
52 function updateFrequencyTable()

53 {

54 var results = "<table><caption>Die Rolling Frequencies</caption>" +
55 "<thead><th>Face</th><th>Frequency</th>" +

56 "<th>Percent</th></thead><tbody>";

57 var length = frequency.length;

58

59 // create table rows for frequencies

60 for (var i = 1; i < Tength; ++1)

61 {

62 results += "<tr><td>1l</td><td>" + 1 + "</td><td>" +

63 formatPercent(frequency[i] / totalDice) + "</td></tr>";

64 } // end for

65

66 results += "</tbody></table>";

67 document.getElementById("frequencyTableDiv").innerHTML = results;
68 1} // end function updateFrequencyTable

69

Fig. 10.10 | Summarizing die-rolling frequencies with an array
instead of a switch. (Part 4 of 5.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

70
71
72
73
74
75
76
77

Fig.

// format percentage
function formatPercent(value)

{
value *= 100;
return value.toFixed(2);
} // end function formatPercent

window.addEventListener("load", start, false);

10.10 | Summarizing die-rolling frequencies with an array

instead of a switch. (Part 5 of 5.)

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

37

10.5 Random Image Generator Using
Arrays

» In Chapter 9, the random image generator required
image files to be named with the word die
followed by a number from 1 to 6 and the file
extension .png (e.g, diel.png).

» The example in Figs. 10.11-10.12 does not require
the image filenames to contain integers in

sequence.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

38

10.5 Random Image Generator Using
Arrays

» It uses an array pictures to store the names of
the image files as strings.

= Each time you click the image in the document, the script
generates a random integer and uses it as an index into the
pictures array.

= The script updates the img element’s src attribute with the
image filename at the randomly selected position in the
pictures array.

= We update the alt attribute with an appropriate description
of the image from the descriptions array.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

39

I <!DOCTYPE html>

2

3 «!-- Fig. 10.11: RandomPicture.html -->

4 <!-- HTML5 document that displays randomly selected images. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Random Image Generator</title>

9 <script src = "RandomPicture.js"'></script>
10 </head>
11 <body>
12
13 </body>
14 </html>

Fig. 10.11 | HTMLS document that displays randomly selected
images. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

'@RandomlmageGenerator . '“ '@RandomlmageGenerator . '“

C Ofile///Cove | @@ & & N

-~

-

C Ofiley//C/biy By =2 VRN

o

m

1

Fig. 10.11 | HTMLS document that displays randomly selected
images. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

41

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

// Fig. 10.12: RandomPicture2.js

// Random image selection using arrays

var iconImg;

var pictures = ["CPE", "EPT", "GPP", "GUI", "PERF", "PORT", "SEO"];

var descriptions = ["Common Programming Error",
"Error-Prevention Tip", "Good Programming Practice",
"Look-and-Feel Observation', "Performance Tip'", "Portability Tip",
"Software Engineering Observation"];

// pick a random image and corresponding description, then modify

// the img element in the document's body

function pickImage()

{
var index = Math.floor(Math.random() * 7);
iconImg.setAttribute("src”, pictures[index] + ".png");
iconImg.setAttribute("alt"™, descriptions[index]);

} // end function pickImage

// registers i1conImg's click event handler
function start()
{
iconImg = document.getElementById("iconImg");
iconImg.addEventListener("click"”, pickImage, false);
} // end function start

window.addEventListener("load", start, false);

. 10.12 | Random image selection using arrays.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

42

<

v

10.6 References and Reference
Parameters

» Two ways to pass arguments to functions
(or methods)

= pass-by-value
= pass—by-reference
» Pass-by-value

=a copy of the argument’s value is made and is
passed to the called function

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 43

<

v

10.6 References and Reference
Parameters

» In JavaScript, numbers, boolean values and
strings are passed to functions by value.

» Pass-by-reference

= The caller gives the called function access to the
caller’s data and allows the called function to
modify the data if it so chooses

= Can /improve performance because it can
eliminate the overhead of copying large amounts
of data, but it can weaken security because the
called function can access the caller’s data

= All objects are passed to functions by reference

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 44

Error-Prevention Tip 10.3

With pass-by-value, changes to the copy of the value
received by the called function do not affect the original
variable’s value in the calling function. This prevents the
accidental side effects that hinder the development of
correct and reliable software systems.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

45

Software Engineering Observation 10.3

When information is returned from a function via a
return statement, numbers and boolean values are
returned by value (i.e., a copy 1s returned), and objects
are returned by reference (i.e., a reference to the object is
returned). When an object is passed-by-reference, it’s
not necessary to return the object, because the function
operates on the original object in memory.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 46

10.7 Passing Arrays to Functions

» Pass an array as an argument to a function

= Specify the array’s name (a reference to the array) without
brackets

» Although entire arrays are passed by reference,

individual numeric and boolean array elements are

passed by value exactly as simple numeric and
boolean variables are passed

= Such simple single pieces of data are called scalars, or
scalar quantities

= To pass an array element to a function, use the indexed
name of the element as an argument in the function call

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A
v

47

v

10.7 Passing Arrays to Functions
(Cont.)

» Join method of an Array

= Returns a string that contains all of the elements
of an array, separated by the string supplied in
the function’s argument

= I[f an argument is not specified, the empty string
is used as the separator

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 48

I <!'DOCTYPE html>

2

3 «!-- Fig. 10.13: PassArray.html -->

4 <!-- HTML document that demonstrates passing arrays and -->
5 <!-- individual array elements to functions. -->

6 <html>

7 <head>

8 <meta charset = "utf-8">

9 <title>Arrays as Arguments</title>

10 <link rel = "stylesheet" type = "text/css" href = "style.css">
11 <script src = "PassArray.js''></script>

12 </head>

13 <body>

14 <h2>Effects of passing entire array by reference</h2>
15 <p id = "originalArray'></p>

16 <p id = "modifiedArray”></p>

17 <h2>Effects of passing array element by value</h2>

18 <p id = "originalElement"></p>

19 <p id = "inModifyElement"></p>
20 <p id = "modifiedElement”></p>
21 </body>
22 </html>

Fig. 10.13 | HTML document that demonstrates passing arrays and
individual array elements to functions. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

@ Arrays as Arguments

Effects of passing entire array by reference

Original array: 1 234 5
Modified array-24 6 § 10

Effects of passing array element by value

a[3] before modifyElement: 8
Vahe in modifvElement: 16
a[3] after modifyElement: 8

C O filey//C:/books/2011/IW3HTP vy &y =2 ‘b X,

Fig. 10.13 | HTML document that demonstrates passing arrays and

individual array elements to functions. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

50

Software Engineering Observation 10.4

JavaScript does not check the number of arguments or
types of arguments that are passed to a function. It’s
possible to pass any number of values to a function.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

51

I // Fig. 10.14: PassArray.js

2 // Passing arrays and individual array elements to functions.
3 function start()

4 {

5 var a = [1, 2, 3, 4, 5 1;

6

7 // passing entire array

8 outputArray("Original array: ", a,

9 document.getElementById("originalArray"”));

10 modifyArray(a); // array a passed by reference

11 outputArray("Modified array: ", a,

12 document.getElementById("modifiedArray”™));

13

14 // passing individual array element

I5 document.getElementById("originalElement™).innerHTML =
16 "a[3] before modifyElement: " + a[3];

17 modifyElement(a[3]); // array element a[3] passed by value
18 document.getElementById("modifiedElement”).innerHTML =
19 "a[3] after modifyElement: " + a[3];
20 1} // end function start()
21

Fig. 10.14 | Passing arrays and individual array elements to
functions. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

22 // outputs heading followed by the contents of "theArray"
23 function outputArray(heading, theArray, output)

24

25 output.innerHTML = heading + theArray.join(" ");
26 } // end function outputArray

27

28 // function that modifies the elements of an array
29 function modifyArray(theArray)

30 {

31 for (var j in theArray)
32 {

33 theArray[j] *= 2;

34 } // end for

35 } // end function modifyArray
36

37 // function that modifies the value passed
38 function modifyElement(e)

39 {

40 e *= 2; // scales element e only for the duration of the function
41 document.getElementById("inModifyElement”).innerHTML =

42 "Value in modifyElement: " + e;

43 } // end function modifyElement

44

45 window.addEventListener("load"”, start, false);

Fig. 10.14 | Passing arrays and individual array elements to
functions. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

10.8 Sorting Arrays with Array dk

Method Sort

» Sorting data

= Putting data in a particular order, such as ascending or
descending

= One of the most important computing functions

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 54

10.8 Sorting Arrays with Array —

Method Sort (Cont.)

» Array object in JavaScript has a built-in
method sort

= With no arguments, the method uses string
comparisons to determine the sorting order of the
array elements

= Method sort takes as its argument the name of a
function that compares its two arguments and returns

- a negative value if the first argument is less than the
second argument,

- Zero if the arguments are equal, or
- a positive value if the first argument is greater than the

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

55

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17

<!DOCTYPE html>

<!-- Fig. 10.15: Sort.html -->

<!-- HTML5 document that displays the results of sorting an array. -->
<html>
<head>
<meta charset = "utf-8">
<title>Array Method sort</title>
<link rel = "stylesheet” type = "text/css" href = "style.css">
<script src = "Sort.js"></script>
</head>
<body>
<hl>Sorting an Array</hl>
<p id = "originalArray"></p>
<p id = "sortedArray'></p>
</body>
</html>

Fig. 10.15 | HTMLS document that displays the results of sorting an
array. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

56

' @ Array Method sort '“

C Ofiley//C/ove @8 = \E X[

Sorting an Array

Data items in original order: 101928374635
Data items in ascending order: 123456789 10

Fig. 10.15 | HTMLS document that displays the results of sorting an
array. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

57

I // Fig. 10.16: Sort.js

2 // Sorting an array with sort.

3 function start()

4 {

5 var a = [10, 1, 9, 2, 8, 3, 7, 4, 6, 5 1;

6

7 outputArray("Data items 1in original order: ", a,
8 document.getElementById("originalArray"));
9 a.sort(comparelntegers); // sort the array
10 outputArray("Data items in ascending order: ", a,
11 document.getElementById("sortedArray”));
12 } // end function start
13

14 // output the heading followed by the contents of theArray
I5 function outputArray(heading, theArray, output)

16 {

17 output.innerHTML = heading + theArray.join(" ");
I8 } // end function outputArray

19

Fig. 10.16 | Sorting an array with sort. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

58

20
21
22
23
24
25
26

Fig.

// comparison function for use with sort
function comparelntegers(valuel, value2)

{
return parseInt(valuel) - parselnt(value2);
} // end function comparelntegers

window.addEventListener("load", start, false);

10.16 | Sorting an array with sort. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

59

Software Engineering Observation 10.5

Functions in JavaScript are considered to be data.
Therefore, functions can be assigned to variables, stored
in arrays and passed to functions just like other data

types.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

60

10.9 Searching Arrays with Array B
Method 1ndex0Of

» It’s often necessary to determine whether an array
contains a value that matches a certain key value.

» The process of locating a particular element value in an
array is called searching.

» The Array object in JavaScript has built-in methods
1index0f and TastIndexOf for searching arrays.

= Method indexOf searches for the first occurrence of the
specified key value

= Method TastIndexOf searches for the last occurrence of
the specified key value.

» If the key value is found in the array, each method
returns the index of that value; otherwise, -1 s
turned.
ne

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 61

10.9 Searching Arrays with Array
Method 1ndex0of (Cont.)

» Every input element has a value property that can be used
to get or set the element’s value.

Optional Second Argument to indexof and 1astIndexof

» You can pass an optional second argument to methods
indexOf and lastIndexOf that represents the index from
which to start the search.

» By default, this argument’s value is 0 and the methods search
the entire array.

» If the argument is greater than or equal to the array’s length,
the methods simply return -1.

» If the argument’s value is negative, it’s used as an offset from
the end of the array.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

62

I <!DOCTYPE html>
2
3 «!-- Fig. 10.17: search.html -->
4 <!-- HTMLS5 document for searching an array with indexOf. -->
5 <html>
6 <head>
7 <meta charset = "utf-8">
8 <title>Search an Array</title>
9 <script src = "search.js"></script>
10 </head>
11 <body>
12 <form action = "#">
13 <p><label>Enter integer search key:
14 <input id = "inputVal"” type = "number'></label>
15 <input 1id = "searchButton” type = "button” value = "Search'>
16 </p>
17 <p id = "result'></p>
I8 </form>
19 </body>
20 </html>

Fig. 10.17 | HTMLS document for searching an array with indexOf.
(Part I of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

@ Linear Search of an Array

Enter integer search key: ‘“15 [;3*‘ Search !

Value not found

@ Linea

C O filey///C;/books/2011/W vy A == ‘ia 2,

Enter integer search key: 16

Found value in element 8

-~

r Search of an Array

C @ file///C/books/2011/MW ¥ &A iﬁi aQ

'S

| Searq_E

Fig. 10.17 | HTML5 document for search
(Part 2 of 2.)

ing an array with indexOf.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

64

COO~NOUDLWN —

WIN=0W0OO~NOOTOBNWN =

Fig.

// Fig. 10.18: search.js
// Search an array with indexOf.
var a = new Array(100); // create an array
// fill array with even integer values from 0 to 198
for (var i = 0; i < a.length; ++i)
{
al 1] = 2 * 1;
} // end for

// function called when "Search" button is pressed
function buttonPressed()
{

// get the input text field

var inputVal = document.getElementById("inputvVal™);

// get the result paragraph
var result = document.getElementById("result");

// get the search key from the input text field then perform the search
var searchKey = parselInt(inputVal.value);
var element = a.indexOf(searchKey);

10.18 | Search an array with indexOf.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

65

24 if (element != -1)

25 {

26 result.innerHTML = "Found value 1in element " + element;

27 Y // end if

28 else

29 {

30 result.innerHTML = "Value not found";

31 } // end else

32 } // end function buttonPressed

33

34 // register searchButton's click event handler

35 function start()

36 {

37 var searchButton = document.getElementById("searchButton”);
38 searchButton.addEventListener("click"”, buttonPressed, false);
39 } // end function start

40

41 window.addEventListener("load", start, false);

Fig. 10.18 | Search an array with indexOf.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<

v

10.10 Multidimensional Arrays

» To identify a particular two-dimensional
multidimensional array element

= Specify the two indices

= By convention, the first identifies the element’s row, and the
second identifies the element’s column

» In general, an array with m rows and n columns is
called an m-by-n array

» Two-dimensional array element accessed using an
element name of the form a[row][column]

= a is the name of the array

= row and column are the indices that uniquely identify the row and
column

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 67

Column 0 Column 1 Column 2 Column 3
Rowo aLlO0]1[0] afo0]J[11 afo01f 21 aCf o0][31
Row !l a[1][0] a[11[1] arl 11021 a[1][31

Row2 a[2 J[01 alf 21011 alf 210271 al[21l 3]

L Column subscript

Row subscript
Array name

Fig. 10.19 | Two-dimensional array with three rows and four
columns.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

68

10.10 Multidimensional Arrays (Cont.)

» Multidimensional arrays can be initialized in
declarations like a one-dimensional array, with
values grouped by row in square brackets

= The interpreter determines the number of rows by counting the
number of sub initializer

= The interpreter determines the number of columns in each row by
counting the number of values in the sub-array that initializes the
row

» The rows of a two-dimensional array can vary in
length

» A multidimensional array in which each row has a
different number of columns can be allocated
dynamically with operator new

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A

v

69

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17
18

<!DOCTYPE html>

<!-- Fig. 10.20: InitArray3.html -->

<!-- HTMLS5 document showing multidimensional array initialization. -->
<html>
<head>
<meta charset = "utf-8">
<title>Multidimensional Arrays</title>
<link rel = "stylesheet” type = "text/css" href = "style.css">
<script src = "InitArray3.js'></script>
</head>
<body>
<h2>Values in arrayl by row</h2>
<div id = "outputl></div>
<h2>Values 1in array2 by row</h2>
<div 1id = "output2'></div>
</body>
</html>

Fig. 10.20 | HTML5 document showing multidimensional array
initialization. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

70

' @ Multidimensicnal Arrays x '“

C @ file///C/E T @ = % a

Values in arrayl by row
123
456

Values in array2 by row

2

I

5 6

Fig. 10.20 | HTMLS5 document showing multidimensional array
initialization. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

VoO~NOOTBND WN =

14
I5
16

// Fig. 10.21: InitArray3.js
// Initializing multidimensional arrays.
function start()

{

var arrayl = [[1, 2, 31, // row O

L 4, 5,6]1; // rowl
var array2 = [[1, 2], // row O

[31, // row 1l

[4, 5, 6] 1; // row 2

outputArray("Values 1in arrayl by row", arrayl,
document.getElementById("outputl™));

outputArray("Values 1in array2 by row', array2,
document.getElementById("output2™));

} // end function start

Fig. 10.21 | Initializing multidimensional arrays. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

72

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

// display array contents
function outputArray(heading, theArray, output)

{

var results = ;

// iterates through the set of one-dimensional arrays
for (var row in theArray)

{

results += ""; // start ordered 1list

// iterates through the elements of each one-dimensional array
for (var column in theArray[row])

{
results += "<1i>" + theArray[row]J[column] + "</1i>";
} // end inner for

results += "</o0l>"; // end ordered Tist
} // end outer for

output.innerHTML = results;
} // end function outputArray

window.addEventListener("load", start, false);

Fig. 10.21 | Initializing multidimensional arrays. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

73

