11

JavaScript: Objects

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>



Chapter 11
JavaScript: Objects

Internet & World Wide Web
How to Program, 5/e




OBJECTIVES
In this chapter you'll:

m Learn object-based programming terminology and concepts.
m Learn the concepts of encapsulation and data hiding.
m Learn the value of object orientation.

m Use the methods of the JavaScript objects Math, String, Date, Boolean and
Number.

m Use HTMLS web storage to create a web application that stores user data locally.

m Represent objects simply using JSON.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




11.1 Introduction
11.2 math Object
1.3 string Object
I'1.3.1 Fundamentals of Characters and Strings
11.3.2 Methods of the String Object
11.3.3 Character-Processing Methods
I1.3.4 Searching Methods
I'1.3.5 Splitting Strings and Obtaining Substrings
1.4 Dpate Object
1.5 Boolean and Number Objects
11.6 document Object
1.7 Favorite Twitter Searches: HTML5 Web Storage

11.8 Using JSON to Represent Objects

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




11.1 Introduction

» This chapter presents a more formal
treatment of objects.

» We use HTML5’s new web storage capabilities
to create a web application that stores a
user’s favorite Twitter searches on the
computer for easy access at a later time.

» We also provide a brief introduction to JSON,
a means for creating JavaScript objects—
typically for transferring data over the
Internet between client-side and server-side

programs.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




(A
v

11.2 Math Object

» Math object methods enable you to
conveniently perform many common
mathematical calculations.

» An object’s methods are called by writing the
name of the object followed by a dot operator
(.) and the name of the method

» In parentheses following the method name is
are arguments to the method

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




Software Engineering Observation 11.1

The difference between invoking a stand-alone function
and invoking a method of an object is that an object
name and a dot are not required to call a stand-alone
function.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.



Method Description Examples

abs( x ) Absolute value of x. abs( 7.2)i1s7.2
abs( 0 )i1s0
abs( -5.6 )is5.6
ceil( x ) Rounds x to the smallest ceil( 9.2 )is 10
integer not less than x. ceil( -9.8 ) is-9.0
cos( x ) Trigonometric cosine of x cos( 0 )isl

(x in radians).

exp( x ) Exponential method &*. exp( 1 )is2.71828
exp( 2 ) is 7.38906
floor( x ) Rounds x to the largest floor( 9.2 )is9
integer not greater than x. floor( -9.8 )is-10.0
log( x ) Natural logarithm of x log( 2.718282 )is1
(base e). log( 7.389056 ) is 2
max( x, y ) Larger value of x and . max( 2.3, 12.7 )is12.7

max( -2.3, -12.7 )is-2.3

Fig. 11.1 | math object methods. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




Method Description Examples

min( x, y ) Smaller value of x and y. min( 2.3, 12.7 )is 2.3
min( -2.3, -12.7 )is-12.7
pow( X, y ) x raised to power y (xY). pow( 2, 7 )is 128
pow( 9, .5 )is3.0
round( x ) Rounds x to the closest round( 9.75 ) is 10
integer. round( 9.25 )is9
sin( x ) Trigonometric sine of x sin( 0)is O

(x in radians).

sqrt( x ) Square root of x. sqrt( 900 ) is 30
sqrt( 9 ) i1s3

tan( x ) Trigonometric tangent of tan( 0 ) is O
x (x in radians).

Fig. 11.1 | math object methods. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




Constant Description Value

Math.E Base of a natural logarithm (¢).  Approximately 2.718
Math.LN2 Natural logarithm of 2. Approximately 0.693
Math.LN10 Natural logarithm of 10. Approximately 2.302
Math.LOG2E Base 2 logarithm of e. Approximately 1.442
Math.LOG10E Base 10 logarithm of e. Approximately 0.434
Math.PI 7—the ratio of a circle’s cir- Approximately
cumference to its diameter. 3.141592653589793
Math.SQRT1_2 Square root of 0.5. Approximately 0.707
Math.SQRT2 Square root of 2.0. Approximately 1.414

Fig. 11.2 | Properties of the Math object.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




]

4

4

>

>

) ‘{avaScript supports Unicode

>

1.3 String Object

Characters are the building blocks of JavaScript
programs

Every program is composed of a sequence of
characters grouped together meanmgfull¥ that is
interpreted by the computer as a series o
instructions used to accomplish a task

A string is a series of characters treated as a single
unit

A string may include letters, digits and various
special characters, such as +, -, *, /, and

which represents a

arge portion of the world’s languages

String literals or string constants are written as a
sequence of characters in double or single
quotation marks

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

11




11.3.2 Methods of the String e
Object

» Combining strings is called concatenation

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 12



Method

Description

charAt( index )

charCodeAt( index )

concat( string )

fromCharCode (

valuel , value2, ...

index0f(
substring, index )

)

Returns a string containing the character at the specified index. If
there’s no character at the 7ndex, charAt returns an empty string.
The first character is located at index 0.

Returns the Unicode value of the character at the specified index,
or NaN (not a number) if there’s no character at that zndex.

Concatenates its argument to the end of the string on which the
method is invoked. The original string is not modified; instead a
new String is returned. This method is the same as adding two
strings with the string-concatenation operator + (e.g., s1. con-
cat(s2) is the same as s1 + s2).

Converts a list of Unicode values into a string containing the cor-
responding characters.

Searches for the first occurrence of substring starting from posi-
tion 7ndex in the string that invokes the method. The method
returns the starting index of substring in the source string or —1 if
substring is not found. If the 7ndex argument is not provided, the
method begins searching from index 0 in the source string.

Fig. 11.3 | Some String-object methods. (Part | of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

13




Method

Description

TastIndexOf (
substring, index )

replace( searchString,
replaceString )

slice( start, end )

Searches for the /ast occurrence of substring starting from posi-
tion index and searching toward the beginning of the string that
invokes the method. The method returns the starting index of
substring in the source string or —1 if substring is not found. If the
index argument is not provided, the method begins searching
from the end of the source string.

Searches for the substring searchString, replaces the first occur-
rence with replaceString and returns the modified string, or
returns the original string if no replacement was made.

Returns a string containing the portion of the string from index
start through index end. If the end index is not specified, the
method returns a string from the szar# index to the end of the
source string. A negative end index specifies an offset from the
end of the string, starting from a position one past the end of the
last character (so —1 indicates the last character position in the
string).

Fig. 11.3 | Some String-object methods. (Part 2 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

14




Method

Description

split( string )

substr(
start, length )

substring(
start, end )

toLowerCase ()

toUpperCase()

Splits the source string into an array of strings (tokens), where its
string argument specifies the delimiter (i.e., the characters that
indicate the end of each token in the source string).

Returns a string containing length characters starting from index
start in the source string. If length is not specified, a string con-
taining characters from szrt to the end of the source string is
returned.

Returns a string containing the characters from index szarz up to
but not including index end in the source string.

Returns a string in which all uppercase letters are converted to
lowercase letters. Non-letter characters are not changed.

Returns a string in which all lowercase letters are converted to
uppercase letters. Non-letter characters are not changed.

Fig. 11.3 | Some String-object methods. (Part 3 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

15




(A
v

11.3.3 Character Processing
Methods

» String method charAt
= Returns the character at a specific position

= Indices for the characters in a string start at O (the first
character) and go up to (but do not include) the string’s
length

= |f the index is outside the bounds of the string, the method
returns an empty string
» String method charCodeAt
= Returns the Unicode value of the character at a specific
position
= |f the index is outside the bounds of the string, the method
returns NaN.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 16




11.3.3 Character Processing

(A
v

Methods (Cont.)

» String method fromCharcCode
= Returns a string created from a series of Unicode

values

» String met
= Returns the

» String met

nod toLowercCase
owercase version of a string

nod toUppercCase

= Returns the uppercase version of a string

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 17



OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16

<!DOCTYPE html>

<!-- Fig. 11.4: CharacterProcessing.html -->
<!-- HTML5 document to demonstrate String methods charAt, charCodeAt,
fromCharCode, tolLowercase and toUpperCase. -->
<html>
<head>
<meta charset = "utf-8">
<title>Character Processing</title>
<1link rel = "stylesheet”" type = "text/css" href = "style.css">
<script src = "CharacterProcessing.js'"></script>
</head>
<body>
<div id = "results'></div>
</body>
</html>

Fig. 11.4 | HTML5 document to demonstrate methods charAt,

charCodeAt, fromCharCode, toLowercase and toUpperCase.
(Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

18




@ Character Processing x

C Ofile///C/ Y (&
Character at index 0 in 'ZEBRA'is Z

'AbCdEfG' in lowercase is 'abcdefg’

Character code at index 0 in 'ZEBRA" is 90
"WORD' contains character codes 87. 79. 82 and 68

'AbCdEfG' in uppercase is 'ABCDEFG'

o =N\

Fig. 11.4 | HTML5 document to demonstrate methods charAt,
charCodeAt, fromCharCode, toLowercase and toUpperCase.

(Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

19




I // Fig. 11.5: CharacterProcessing.js

2 // String methods charAt, charCodeAt, fromCharCode,

3 // toLowercase and toUpperCase.

4 function start()

5 {

6 var s = "ZEBRA";

7 var s2 = "AbCdEFG";

8 var result = "";

9
10 result = "<p>Character at index 0 in '" + s + "' is " +
11 s.charAt( 0 ) + "</p>"";
12 result += "<p>Character code at index 0 in "" + s + "' 1is " +
13 s.charCodeAt( 0 ) + "</p>";
14
15 result += "<p>'" + String.fromCharCode( 87, 79, 82, 68 ) +
16 "' contains character codes 87, 79, 82 and 68</p>";
17

Fig. 11.5 | String methods charAt, charCodeAt, fromCharCode,
toLowercase and toUpperCase. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

20




18
19
20
21
22
23
24
25
26

result += "<p>'" + s2 + in lowercase is -
s2.toLowerCase() + "'"</p>";

result += "<p>"" + s2 + "' 1in uppercase is '" +
s2.toUpperCase() + "'</p>";

document.getElementById( "results"” ).innerHTML = result;
} // end function start

window.addEventListener( "load", start, false );

Fig. 11.5 | String methods charAt, charCodeAt, fromCharCode,
toLowercase and toUpperCase. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

21




(A

11.3.4. Searching Methods

» String method 1ndexof
= Determines the location of the first occurrence of its argument in
the string used to call the method

= |If the substring is found, the index at which the first occurrence of
the substring begins is returned; otherwise, -1 is returned

= Receives an optional second argument specifying the index from
which to begin the search

» String method lastIndexOf
= Determines the location of the last occurrence of its argument in
the string used to call the method
= If the substring is found, the index at which the last occurrence of
the substring begins is returned; otherwise, -1 is returned
= Receives an optional second argument specifying the index from
which to begin the search

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

22



I <!DOCTYPE html>

2

3 «!-- Fig. 11.6: SearchingStrings.html -->

4 <!-- HTML document to demonstrate methods indexOf and lastIndexOf. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Searching Strings</title>

9 <link rel = "stylesheet” type = "text/css" href = "style.css">
10 <script src = "SearchingStrings.js''></script>

11 </head>

12 <body>

13 <form id = "searchForm” action = "#">

14 <h1>The string to search is:

15 abcdefghijklmnopqgrstuvwxyzabcdefghijklm</hl>

16 <p>Enter the substring to search for

17 <input id = "inputField" type = "search">

18 <input 1id = "searchButton” type = "button” value = "Search"></p>
19 <div id = "results"></div>
20 </form>
21 </body>
22 </html>

Fig. 11.6 | HTML document to demonstrate methods indexOf and
lastIndexOf. (Part | of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 23




@ Searching Strings

= OfiIe:,-wC:/books!ZOll[IWBHTPS!exampIes/ch11/ﬁgll_06-0?/5earchirﬂz X,

The string to search is:
abcdefghijklmnopqrstuvwxyzabcdefghijklm

Enter the substring to search for | def x
' | s

First occurrence is located at index 3

Last occurrence is located at index 29

First occurrence from index 12 is located at index 29
Last occurrence from index 12 is located at index 3

Fig. 11.6 | HTML document to demonstrate methods indexOf and
lastIndexOf. (Part 2 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

24




Searching Strings >

C @ filey///C;/books/2011/IW3HTP5/examples/ch11/figl1_06-07/Searchir Ty N\

The string to search is:
abcdefghijklmnopqrstuvwxyzabcdefghijklm

Enter the substring to search for  xyz X ‘ Searcht

First occurrence is located at index 23
Last occurrence is located at index 23
First occurrence from index 12 is located at index 23
Last occurrence from index 12 is located at index -1

Fig. 11.6 | HTML document to demonstrate methods indexOf and
lTastIndexOf. (Part 3 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

25




I // Fig. 11.7: SearchingStrings.js

2 // Searching strings with index0Of and lastIndexOf.

3 var letters = "abcdefghijklmnopqrstuvwxyzabcdefghijklm";

4

5 function buttonPressed()

6 {

7 var inputField = document.getElementById( "inputField" );

8

9 document.getElementById( "results” ).innerHTML =
10 "<p>First occurrence 1is located at index " +
11 letters.indexOf( inputField.value ) + "</p>" +
12 "<p>Last occurrence is located at index " +
13 lTetters.lastIndexOf( inputField.value ) + "</p>" +
14 "<p>First occurrence from index 12 1is located at index " +
15 letters.indexOf( inputField.value, 12 ) + "</p>" +
16 "<p>Last occurrence from index 12 is located at index " +
17 letters.lastIndexOf( inputField.value, 12 ) + "</p>";

I8 } // end function buttonPressed

Fig. 11.7 | Searching strings with indexOf and TastIndexOf. (Part
| of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




19

20 // register click event handler for searchButton

21 function start()

22 {
23 var searchButton = document.getElementById( "searchButton" );
24 searchButton.addEventListener( "click"”™, buttonPressed, false );

25 } // end function start
26

27 window.addEventListener( "load", start, false );

Fig. 11.7 | Searching strings with indexOf and TastIndexOf. (Part
20f2)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

27




11.3.5 Splitting Strings and
Obtaining Substrings

» Breaking a string into tokens is called tokenization

» Tokens are separated from one another by delimiters,
typically white-space characters such as blank, tab, newline

and carriage return
= QOther characters may also be used as delimiters to separate tokens

» String method split
= Breaks a string into its component tokens
= Argument is the delimiter string
= Returns an array of strings containing the tokens

» String method substring
= Returns the substring from the starting index (its first argument) up to but not
including the ending index (its second argument)

= If the ending index is greater than the length of the string, the substring returned
includes the characters from the starting index to the end of the original string

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A

v

28



I <!DOCTYPE html>

2

3 <!-- Fig. 11.8: SplitAndSubString.html -->

4 <!-- HTML document demonstrating String methods split and substring. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>split and substring</title>

9 <link rel = "stylesheet” type = "text/css" href = "style.css">

10 <script src = "SplitAndSubString.js'"></script>

11 </head>

12 <body>

13 <form action = "#">

14 <p>Enter a sentence to split into words:</p>

15 <p><input id = "inputField"” type = "text'>

16 <input id = "splitButton” type = "button” value = "Split'"></p>
17 <div id = "results"></p>

I8 </form>

19 </body>
20 </html>

Fig. 11.8 | HTML document demonstrating String methods sp1it
and substring. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 29




@ split and substring X

C @ file///C/books/201L, ¥y & B = & & |

Enter a sentence to split into words:
This is a sentence containing 7 tokens

The sentence split into words is:

This

is

a
sentence
containing
5

tokens

The first 10 characters of the input string are:

'"Thisisa'

Fig. 11.8 | HTML document demonstrating String methods sp1it
and substring. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

30




Voo~ NL WN =

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// Fig. 11.9: SplitAndSubString.js
// String object methods split and substring.
function splitButtonPressed()

{
var inputString = document.getElementById( "inputField" ).value;

var tokens = inputString.split(C " " );

var results = document.getElementById( "results”™ );

results.innerHTML = "<p>The sentence split into words 1is: </p>" +
"<p class = "indent'>" +
tokens.join( "</p><p class = "indent'>" ) + "</p>" +

"<p>The first 10 characters of the input string are: </p>" +
"<p class = "indent'>'" + inputString.substring( 0, 10 ) + "'</p>";
} // end function splitButtonPressed

// register click event handler for searchButton
function start()
{
var splitButton = document.getElementById( "splitButton"” );
splitButton.addEventListener( "click”™, splitButtonPressed, false );
} // end function start

window.addEventListener( "load", start, false );

Fig. 11.9 | String-object methods sp1it and substring.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 31



11.3.5 Splitting Strings and
Obtaining Substrings (Cont.)

» delimiter string
= the string that determines the end of each token in the original string.

» The method returns the substring from the starting index (0
in this example) up to but not including the ending index (10
in this example).

» If the ending index is greater than the length of the string,
the substring returned includes the characters from the
starting index to the end of the original string.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A
v

32



11.4 Date Object

» Date object provides methods for date and time
manipulations

Based either on the computer’s local time zone or on World Time
Standard’s Coordinated Universal Time (abbreviated UTC)

» Most methods have a local time zone and a UTC
version

» Empty parentheses after an object name indicate a
call to the object’s constructor with no arguments

A constructor is an initializer method for an object
Called automatically when an object is allocated with new

The Date constructor with no arguments initializes the Date object with
the local computer’s current daté and time

A new Date object can be initialized by ﬁ)assin the number of

milliseconds since midnight, January 1, 1970, fo the Date constructor

Can also create a new Date object by supplyin% arguments to the Date
co_ﬂ_structodr for year, month, date, hours, minutes, seconds and
milliseconds.

- Hours, minutes, seconds and milliseconds arguments are all optional
- If any one of these arguments is not specified, a zero is supplied in its place
- If an argument is specified, all arguments to its left must be specified

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

33




Method Description

getDate() Returns a number from 1 to 31 representing the day of the

getUTCDate() month in local time or UTC.

getDay () Returns a number from 0 (Sunday) to 6 (Saturday) represent-

getUTCDay () ing the day of the week in local time or UTC.

getFullYear() Returns the year as a four-digit number in local time or

getUTCFullYear() UTC.

getHours () Returns a number from 0 to 23 representing hours since

getUTCHours() midnight in local time or UTC.

getMilliseconds() Returns a number from 0 to 999 representing the number of

getUTCMi111iSeconds () milliseconds in local time or UTC, respectively. The time is
stored in hours, minutes, seconds and milliseconds.

getMinutes () Returns a number from 0 to 59 representing the minuctes for

getUTCMinutes ) the time in local time or UTC.

getMonth() Returns a number from 0 (January) to 11 (December) repre-

getUTCMonth() senting the month in local time or UTC.

getSeconds () Returns a number from 0 to 59 representing the seconds for

getUTCSeconds () the time in local time or UTC.

Fig. 11.10 | Date-object methods. (Part | of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




Method Description

getTime() Returns the number of milliseconds between January 1,
1970, and the time in the Date object.

getTimezoneOffset() Returns the difference in minutes between the current time
on the local computer and UTC (Coordinated Universal
Time).

setDate( val) Sets the day of the month (1 to 31) in local time or UTC.

setUTCDate( val)

setFullYear(y, m, d) Sets the year in local time or UTC. The second and third

setUTCFullYear(y, m, d) arguments representing the month and the date are optional.

If an optional argument is not specified, the current value in
the Date object is used.

setHours( A, m, s, ms) Sets the hour in local time or UTC. The second, third and

setUTCHours( b, m, s, ms) fourth arguments, representing the minutes, seconds and
milliseconds, are optional. If an optional argument is not
specified, the current value in the Date object is used.

setMilliSeconds( #s) Sets the number of milliseconds in local time or UTC.
setUTCMilTliseconds ( 725 )

Fig. 11.10 | Date-object methods. (Part 2 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




Method Description

setMinutes( mz, s, ms) Sets the minute in local time or UTC. The second and third

setUTCMinutes( 2, s, ms) arguments, representing the seconds and milliseconds, are
optional. If an optional argument is not specified, the current
value in the Date object is used.

setMonth( mz, d) Sets the month in local time or UTC. The second argument,

setUTCMonth( 2, d) representing the date, is optional. If the optional argument is
not specified, the current date value in the Date object is
used.

setSeconds (s, ms) Sets the seconds in local time or UTC. The second argu-

setUTCSeconds( s, 71s) ment, representing the milliseconds, is optional. If this argu-

ment is not specified, the current milliseconds value in the
Date object is used.

setTime( ms) Sets the time based on its argument—the number of elapsed
milliseconds since January 1, 1970.

toLocaleString() Returns a string representation of the date and time in a form
specific to the computer’s locale. For example, September 13,
2007, at 3:42:22 PM is represented as 09/13/07 15:47:22 in
the United States and 73/09/07 15:47:22 in Europe.

Fig. 11.10 | Date-object methods. (Part 3 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

36




Method Description

toUTCString() Returns a string representation of the date and time in the
form: 15 Sep 2007 15:47:22 UTC.

toString() Returns a string representation of the date and time in a form
specific to the locale of the computer (Mon Sep 17 15:47:22
EDT 2007 in the United States).

valueOf() The time in number of milliseconds since midnight, January
1, 1970. (Same as getTime.)

Fig. 11.10 | Date-object methods. (Part 4 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

37




(A

11.4 Date Object (Cont.)

» Date method parse

= Receives as its argument a string representing a date and
time and returns the number of milliseconds between
midnight, January 1, 1970, and the specified date and time

» Date method UTC

= Returns the number of milliseconds between midnight,

January 1, 1970, and the date and time specified as its
arguments

= Arguments include the required year, month and date, and
the optional hours, minutes, seconds and milliseconds
= If an argument is not specified, a O is supplied in its place

= For hours, minutes and seconds, if the argument to the

right of any of these arguments is specified, that argument
must also be specified

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

38



I <!'DOCTYPE html>

2

3 «!-- Fig. 11.11: DateTime.html -->

4 <!-- HTML document to demonstrate Date-object methods. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Date and Time Methods</title>

9 <link rel = "stylesheet” type = "text/css" href = "style.css">
10 <script src = "DateTime.js""></script>

11 </head>

12 <body>

13 <h1l>String representations and valueOf</hl>
14 <section 1id = "strings'></section>

15 <h1l>Get methods for local time zone</hl>

16 <section 1id = "getMethods”></section>

17 <hl>Specifying arguments for a new Date</hl>
18 <section 1id = "newArguments'></section>

19 <hl>Set methods for local time zone</hl>
20 <section 1id = "setMethods"></section>
21 </body>
22 </html>

Fig. 11.11 | HTML document to demonstrate Date-object methods.
(Part | of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




Fig. 11.11 |

@ Date and Time Methods .

C O file:///C:/books/2011/IW3HTPS/e Ve & @ M &

String representations and valueOf

toString: Thu Aug 11 2011 10-31:21 GMT-0400 (Eastern Daylight Time)
toLocaleString: Thu Aug 11 2011 10:31:21 GMT-0400 (Eastern Daylight Time)
toUTCString: Thu, 11 Aug 2011 14:31:221 GMT

valeOf 1313073081914

Get methods for local time zone

getDate: 11

getDay: 4

getMonth: 7

getFullYear: 2011
getTime: 1313073081914
getHours: 10

getMinutes: 31
getSeconds: 21
getMilliseconds: 914
getTimezoneOffset: 240

© X

HTML document to demonstrate Date-object methods.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

40




Specifying arguments for a new Date

Date: Fri Mar 18 2011 01:05:00 GMT-0400 (Eastern Daylight Time)

Set methods for local time zone

Modified date: Sat Dec 31 2011 23:59:59 GMT-0500 (Eastern Standard Time)

Fig. 11.11 |
(Part 3 of 3.)

HTML document to demonstrate Date-object methods.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

41




Voo~ NL WN =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

// Fig. 11.12: DateTime.js
// Date and time methods of the Date object.
function start()

{

var current = new Date();

// string-formatting methods and valueOf
document.getElementById( "strings" ).innerHTML =
"<p>toString: " + current.toString() + "</p>" +
"<p>tolocaleString: " + current.toLocaleString() + "</p>" +
"<p>toUTCString: " + current.toUTCString() + "</p>" +
"<p>valueOf: " + current.valueOf() + "</p>";

// get methods

document.getElementById( "getMethods™ ).innerHTML =
"<p>getDate: " + current.getDate() + "</p>" +
"<p>getDay: " + current.getDay() + "</p>" +
"<p>getMonth: " + current.getMonth() + "</p>" +
"<p>getFullYear: " + current.getFullYear() + "</p>" +
"<p>getTime: " + current.getTime() + "</p>" +

"<p>getHours: " + current.getHours() + "</p>" +
"<p>getMinutes: " + current.getMinutes() + "</p>" +
"<p>getSeconds: " + current.getSeconds() + "</p>" +

+ current.getMilliseconds() + "</p>" +
" + current.getTimezoneOffset() + "</p>";

"<p>getMilliseconds:
"<p>getTimezoneOffset:

Fig. 11.12 | Date and time methods of the Date object. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

42




26

27 // creating a Date

28 var anotherDate = new Date( 2011, 2, 18, 1, 5, 0, 0 );
29 document.getElementById( "newArguments' ).innerHTML =
30 "<p>Date: " + anotherDate + "</p>";

31

32 // set methods

33 anotherDate.setDate( 31 );

34 anotherDate.setMonth( 11 );

35 anotherDate.setFullYear( 2011 );

36 anotherDate.setHours( 23 );

37 anotherDate.setMinutes( 59 );

38 anotherDate.setSeconds( 59 );

39 document.getElementById( "setMethods™ ).innerHTML =
40 "<p>Modified date: " + anotherDate + "</p>"";

41 } // end function start

42

43 window.addEventListener( "load", start, false );

Fig. 11.12 | Date and time methods of the Date object. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




Common Programming Error 11.1

Assuming that months are represented as numbers from
1 to 12 leads to off-by-one errors when you’re
processing Dates.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

44




<
11.5 Boolean and Number Objects

v

» The Boolean and Number objects are object wrappers
for boolean true/false values and numbers,
respectively

» When a boolean value is required in a JavaScript
program, JavaScript automatically creates a Boolean
object to store the value

» JavaScript programmers can create Boolean objects
explicitly

var b = new Boolean( booleanValue );
booleanValue specifies whether the Boolean object
should contain true or false.

= If booleanValueis false, 0, null, Number.NaN or the

empty string ("'"), or if no argument is supplied, the new
Boolean object contains false

= Otherwise, the new Boolean object contains true

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 45




Method Description

toString() Returns the string "true" if the value of the Boolean object is true; other-
wise, returns the string "false".

valueOf() Returns the value true if the Boolean object is true; otherwise, returns
false.

Fig. 11.13 | Boolean-object methods.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

46




11.5 Boolean and Number Objects
(Cont.)

» JavaScript automatically creates Number
objects to store numeric values in a script

» You can create a Number object with the
Statement

var n = new Number( numericValue ) ;

numericValue is the number to store in the
object

» Although you can explicitly create Number
objects, normally they are created when

-

needed by the JavaScript interpreter

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




Method or property

Description

toString( radix)

valueOf()
Number .MAX_VALUE
Number .MIN_VALUE

Number .NaN

Number .NEGATIVE_INFINITY

Number .POSITIVE_INFINITY

Returns the string representation of the number. The
optional radix argument (a number from 2 to 306) specifies
the number’s base. Radix 2 results in the binary representa-
tion, 8 in the octal representation, 10 in the decimal represen-
tation and 16 in the hexadecimal representation. See
Appendix E, Number Systems, for an explanation of the
binary, octal, decimal and hexadecimal number systems.

Returns the numeric value.
The largest value that can be stored in a JavaScript program.
The smallest value that can be stored in a JavaScript program.

Not a number—a value returned from an arithmetic expres-

sion that doesn’t result in a number (e.g., parseInt("hello")
cannot convert the string "hello" to a number, so parseInt
would return Number.NaN.) To determine whether a value is

NaN, test the result with function isNaN, which returns true
if the value is NaN; otherwise, it returns false.

A value less than -Number .MAX_VALUE.
A value greater than Number.MAX_VALUE.

. 11.14 | Number-object methods and properties.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

48




<P
11.6 document Object

» document object

= Provided by the browser and allows JavaScript code
to manipulate the current document in the browser

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 49



Method Description

getElementById( id ) Returns the HTMLS5 element whose id attribute
matches 7d.

getElementByTagName( fagName ) Returns an array of the HI'ML5 elements with the
specified zagName.

Fig. 11.15 | document-object methods.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

50




11.7 Favorite Twitter Searches

Before HTML5, websites could store only small amounts of
text-based information on a user’s computer using cookies.

A cookie is a key/value pairin which each key has a
corresponding value.

The key and value are both strings.

Cookies are stored by the browser on the user’s computer to
maintain client-specific information during and between
browser sessions.

A website might use a cookie to record user preferences or
other information that it can retrieve during the client’s
subsequent visits.

When a user visits a website, the browser locates any cookies
written by that website and sends them to the server.

Cookies may be accessed only by the web server and scripts
of the website from which the cookies originated

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

51




11.7 Favorite Twitter Searches (Cont.)

Problems with Cookies
» They’re extremely limited in size.
» Cookies cannot store entire documents.

» If the user browses the same site from multiple tabs, all of
the site’s cookies are shared by the pages in each tab.

= This could be problematic in web applications that allow the user to
purchase items.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A

v

52



11.7 Favorite Twitter Searches (Cont.)

Introducing localStorage and sessionStorage

» As of HTMLS5, there are two new mechanisms for storing
keyl/(\_/alue pairs that help eliminate some of the problems with
cookies.

= Web applications can use the window object’s
Tocalstorage property to store up to several megabytes of
key/value-pair string data on the user’s computer and can
aclgess that data across browsing sessions and browser
tabs.

= Web applications that need access to data for on/y a
browsing session and that must keep that data separate
among multiple tabs can use the window object’s
sessionStorage property. There’s a separate
sessionStorage object for every browsing session,
incllouc_ling separate tabs that are accessing the same
website.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 53




(A

11.7 Favorite Twitter Searches (Cont.)

Favorite Twitter Searches App Using 1localStorage and
sessionStorage

4

This app allows users to save their favorite (possibly lengthy)
Twitter search strings with easy-to-remember, user-chosen,
short tag names. Users can then conveniently follow the
tweets on their favorite topics by visiting this web page and
clicking the link for a saved search.

The user’s favorite searches are saved using localStorage,
so they’re immediately available each time the user browses
the app’s web page.

The app uses sessionStorage to determine whether the user
has visited the page previously during the current browsing
session. If not, the app displays a welcome message.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

54



a) Favorite Twitter Searches app when it's loaded for the first time in this
browsing session and there are no tagged searches

@ Twitter Searches >

Welcome message €« C | ® testdeitel.com/iw3htp5/chll/figyy ¢ @ = & ‘n LS
appears only on

the first visit to the -
page duting this \ | Favorite Twitter Searches

browsing session

Enter Twitter Welcome to the Favorite Twitter Searches App

search query here i N —

m

, Twitter search operators
Tag your search —& T2 vour quen | Save | | Clear All Saved Searches |

Previously Tagged Searches i

Fig. 11.16 | Sample outputs from the Favorite Twitter Searches
web application. (Part | of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

55




b) App with several saved searches and the user saving a new search

(©) Twitter Searches x

€ =2 C © testdeitel.com/iw3htp5/chll/fig vy & M & ‘n X

P

Favorite Twitter Searches

from:deitel | Twitter search operators
Deitel | [SBVE'I:,J? [ Clear All Saved Searches ]

m

Previously Tagged Searches

Saved searches §4—mm

Q_mms
JavaHTP 3

Fig. 11.16 | Sample outputs from the Favorite Twitter Searches
web application. (Part 2 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




c) App after new search is saved—the user is about to click the Deitel search

(©) Twitter Searches ¢

€ 9 C © testdeitel.com/iw3hip5/chll/figsy & B & ‘ﬁ X

A

Favorite Twitter Searches

[Entery Twitter search que | Twitter search operators
T | [ Save | [ Clear All Saved Searches |

m

Previously Tagged Searches

AndroidFP
Deite]
IW3HTPs
JavaHTP  [Edit]

search.twitter.com/search?q=fr... -

Fig. 11.16 | Sample outputs from the Favorite Twitter Searches
web application. (Part 3 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




d) Results of touching the Deitel link

o Twitter / Search - from:deit. »

€« C | ® twitter.com/#l/search/from:deitel?q=from v¢ | ¢ {4 = & VS X

| twittery

 —rTTr— S

Results for from:deitel

Tweets - Top Refine results »
deitel Deitel
@ Android now on 150 million devices:
feedproxy.google.com/~rTechcrunch/... fo.me/1572vomtJ -
< [T} | »

Fig. 11.16 | Sample outputs from the Favorite Twitter Searches
web application. (Part 4 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




(A
v

11.7 Favorite Twitter Searches (Cont.)

Favorite Twitter Searches HTML5 Document

» The Favorite Twitter Searches application

contains three files

= FavoriteTwitterSearches.html
= styles.css
= FavoriteTwitterSearches.js

» The HTML5 document provides a form that
allows the user to enter new searches.
Previously tagged searches are displayed in
the div named searches.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 59




I <!DOCTYPE html>

2

3 «!-- Fig. 11.17: FavoriteTwitterSearchs.html -->

4 <!-- Favorite Twitter Searches web application. -->

5 <html>

6 <head>

7 <title>Twitter Searches</title>

8 <link rel = "stylesheet” type = "text/css" href = "style.css">
9 <script src = "FavoriteTwitterSearches.js"></script>

10 </head>

11 <body>

12 <hl>Favorite Twitter Searches</hl>

13 <p id = "welcomeMessage''></p>

14 <form action = "#">

15 <p><input id = "query" type = "text"

16 placeholder = "Entery Twitter search query's>

17 <a href = "https://dev.twitter.com/docs/using-search">
18 Twitter search operators</a></p>

19 <p><input id = "tag” type = "text" placeholder = "Tag your query'>
20 <input type = "button” value = "Save"
21 id = "saveButton">
22 <input type = "button” value = "Clear All Saved Searches”
23 id = "clearButton'></p>
24 </ form>

Fig. 11.17 | Favorite Twitter Searches web application. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




25 <hl>Previously Tagged Searches</hl>
26 <div id = "searches"></div>

27 </body>

28 </html>

Fig. 11.17 | Favorite Twitter Searches web application. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

61




<>

11.7 Favorite Twitter Searches (Cont.)

CSS for Favorite Twitter Searches
» styles.css contains the CSS styles for this app.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 62




p { margin: Opx; }
#welcomeMessage { margin-bottom: 10px; font-weight: bold; }
input[type = "text"] { width: 250px; }

/* 1list item styles */
span { margin-left: 10px; display: inline-block; width: 100px; }
1i { Tist-style-type: none; width: 220px;}
Ti:first-child { border-top: 1lpx solid grey; }
Ti:nth-child(even) { background-color: lightyellow;
border-bottom: 1lpx solid grey; }
Ti:nth-child(odd) { background-color: Tightblue;
border-bottom: 1lpx solid grey; }

SOQﬂGMAUN—

N

. 11.18 | Styles used in the Favorite Twitter Searches app.

Fig

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

63




(A

11.7 Favorite Twitter Searches (Cont.)

Script for Favorite Twitter Searches

»

4

4

FﬁvoriteTwi tterSearches. js presents the JavaScript for
the app.

When the HTML5 document loads, function start is called to
register event handlers and call function ToadSearches.

The sessionStorage object is used to determine whether the
user has already visited the page during this browsing
session.

The getItem method receives a name of a key as an
argument.

= If the key exists, the method returns the corresponding string value;
otherwise, it returns null.

If this is the user’s first visit to the page during this browsing
session, the setItem method is used to set the key
"herePreviously" to the string "true”, then the app displays
a welcome message.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

64



11.7 Favorite Twitter Searches (Cont.)

The lTocalStorage object’s length represents the number of
key/value pairs stored.

Method key receives an index as an argument and returns the
corresponding key.

For simplicity, we use the oncl1ick attributes of the dynamically
ﬁenerated Edit and Delete buttons to set the buttons’ event

andlers—this is an older mechanism for registering event
handlers.

To register these with the elements’ addEventListener
method, we’d have to dynamically locate the buttons in the page
after we’ve created them, then register the event handlers, which
would require significant additional code.

Separately, notice that each event handler is receiving the button
input element’s id as an argument—this enables the event
handler to use the id value when handling the event.

[Note: The TocalStorage and sessionStorage properties and
mbethod? we discuss throughout this section apply to both
objects.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

65




11.7 Favorite Twitter Searches (Cont.)

Function clearAll1Searches is called when the user clicks the
Clear All Saved Searches button.

The clear method of the TocalStorage object removes all
key/value pairs from the object.

lToadSearches is called to refresh the list of saved searches in
the web page.

Functiokll'l saveSearch is called when the user clicks Save to save
a search.

The setItem method stores a key/value pair in the
localStorage object.

= |If the key already exits, setItem replaces the corresponding value;

= otherwise, it creates a new key/value pair.

loadSearches is called to refresh the list of saved searches in
the web page.

removeItem method is called to remove a key/value pair from
the localStorage object.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A

v

66



I // Fig. 11.19: FavoriteTwitterSearchs.js

2 // Storing and retrieving key/value pairs using

3 // HTML5 localStorage and sessionStorage

4 var tags; // array of tags for queries

5

6 // loads previously saved searches and displays them in the page
7 function loadSearches()

8 {

9 if ( !sessionStorage.getItem( "herePreviously"™ ) )

10 {

11 sessionStorage.setItem( "herePreviously"”, "true" );

12 document.getElementById( "welcomeMessage” ).innerHTML =
13 "Welcome to the Favorite Twitter Searches App";

14 } // end if

I5

16 var length = localStorage.length; // number of key/value pairs
17 tags = []; // create empty array

I8

19 // load all keys
20 for (var 1 = 0; 1 < length; ++1)
21 {
22 tags[i] = localStorage.key(i);
23 } // end for

Fig. 11.19 | Storing and retrieving key/value pairs using HTML5
localStorage and sessionStorage. (Part | of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

tags.sort(); // sort the keys

var markup = "<ul>"; // used to store search link markup
var url = "http://search.twitter.com/search?g=";

// build Tist of Tinks
for (var tag in tags)

{
var query = url + localStorage.getItem(tags[tag]);
markup += "<lis<span><a href = """ + query + "'>" + tags[tag] +
"</a></span>" +
"<input id = '" + tags[tag] + "' type = 'button' " +
"value = "Edit' onclick = 'editTag(id)'>" +
"<input id = '"" + tags[tag] + "' type = 'button' " +
"value = 'Delete' onclick = 'deleteTag(id)'>";
} // end for

markup += "</ul>";
document.getElementById("“searches™).innerHTML = markup;
} // end function loadSearches

Fig. 11.19 | Storing and retrieving key/value pairs using HTML5
localStorage and sessionStorage. (Part 2 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

68




46 // deletes all key/value pairs from localStorage
47 function clearAllSearches()

48 {

49 TocalStorage.clear();

50 lToadSearches(); // reload searches
51 } // end function clearAllSearches

52

53 // saves a newly tagged search into TocalStorage
54 function saveSearch()

55 {

56 var query = document.getElementById('query");
57 var tag = document.getElementById("tag");

58 TocalStorage.setItem(tag.value, query.value);
59 tag.value = ""; // clear tag input

60 query.value = ""; // clear query 1input

61 loadSearches(); // reload searches

62 } // end function saveSearch

63

64 // deletes a specific key/value pair from localStorage
65 function deleteTag( tag )

66 {
67 localStorage.removeltem( tag );
68 ToadSearches(); // reload searches

69 } // end function deleteTag

Fig. 11.19 | Storing and retrieving key/value pairs using HTML5
alStorage and sessionStorage. (Part 3 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

// display existing tagged query for editing

function editTag( tag )

{
document.getElementById(""query").value = localStorage[ tag ];
document.getElementById('"tag”).value = tag;
ToadSearches(); // reload searches

} // end function editTag

// register event handlers then load searches

function start()

{
var saveButton = document.getElementById( "saveButton" );
saveButton.addEventListener( "click', saveSearch, false );
var clearButton = document.getElementById( "clearButton" );
clearButton.addEventListener( "click”™, clearAllSearches, false );
ToadSearches(); // load the previously saved searches

} // end function start

window.addEventListener( "load", start, false );

Fig. 11.19 | Storing and retrieving key/value pairs using HTMLS5
localStorage and sessionStorage. (Part 4 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

70




(A

11.8 Using JSON to Represent Objects

» JSON (JavaScript Object Notation)

v

= A simple way to represent JavaScript objects as strings
= introduced as an alternative to XML as a data-exchange technique

JSON has gained acclaim due to its simple format, making
objects easy to read, create and parse.

Each JSON object is represented as a list of property names
and values contained in curly braces, in the following format:

{ propertyNamel : valuel, propertyName’Z : valueZ}

Arrays are represented in JSON with square brackets in the
following format:

[ valueO, valuel, valuel ]

Each value can be a string, a number, a JSON object, true,
false or null.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

71



11.8 Using JSON to Represent Objects — —
(Cont.)

» To appreciate the simplicity of JSON data, examine this
representation of an array of address—book entries that we’ll
use in Chapter 16:

[ { first: "Cheryl', last: 'Black' },
{ first: "James', last: 'Blue' 1},
{ first: "™mike', last: 'Brown' },
{ first: 'Meg', last: 'Gold' } ]
» JSON provides a straightforward way to manipulate objects in
JavaScript, and many other programming languages now
support this format.

» In addition to simplifying object creation, JSON allows
programs to easily extract data and efficiently transmit it
across the Internet.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 72




