12

Document Object Model (DOM): Objects
and Collections

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>

OBJECTIVES

In this chapter you will:

m Use JavaScript and the W3C Document Object Model to create dynamic web pages.
m Learn the concept of DOM nodes and DOM trees.

m Traverse, edit and modify elements in an HTML5 document.

m Change CSS styles dynamically.

m Create JavaScript animations.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

12.1 Introduction

12.2 Modeling a Document: DOM Nodes and Trees

12.3 Traversing and Modifying a DOM Tree

12.4 DOM Collections

12.5 Dynamic Styles

12.6 Using a Timer and Dynamic Styles to Create Animated Effects

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A
v

12.1 Introduction

» The Document Object Model gives you
scripting access to a//the elements on a web
page. Using JavaScript, you can create, modify
and remove elements in the page
dynamically.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 4

Software Engineering Observation 12.1

With the DOM, HTMLS5 elements can be treated as
objects, and many attributes of HTMLS elements can be
treated as properties of those objects. Then objects can
be scripted with JavaScript to achieve dynamic effects.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<]
12.2 Modeling a Document: DOM NodeLsJ—
and Trees

» getElementById method
= Returns objects called DOM nodes

= FEvery piece of an HTML5 page (elements, attributes, text, etc.) is modeled in the web
browser by a DOM node

» The nodes in a document make up the page’s DOM tree,
which describes the relationships among elements

» Nodes are related to each other through child-parent
relationships

» A node can have multiple children, but only one parent
» Nodes with the same parent node are referred to as siblings

» The html]l node in a DOM tree is called the root node, because
it has no parent

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 6

Command to display developer

Browser tools

Chrome Windows/Linux: Control + Shift + i
Mac OS X: Command + Option + i

Firefox Windows/Linux: Control + Shift + i

Mac OS X: Command + Shift + i
Internet Explorer F12

Opera Windows/Linux: Control + Shift + i
Mac OS X: Command + Option + i
Safari Windows/Linux: Control + Shift + i

Mac OS X: Command + Option + i

Fig. 12.1 | Commands for displaying developer tools
in desktop browsers.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

I <!DOCTYPE html>

2

3 «!-- Fig. 12.2: domtree.htm]l -->

4 <!-- Demonstration of a document's DOM tree. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>DOM Tree Demonstration</title>

9 </head>

10 <body>

11 <h1>An HTML5 Page</hl>

12 <p>This page contains some basic HTMLS5 elements. The DOM tree
13 for the document contains a DOM node for every element</p>
14 <p>Here's an unordered list:</p>

15

16 <1i>0ne</11>

17 <1i>Two</11i>

18 <1i>Three</11>

19
20 </body>
21 </html>

Fig. 12.2 | Demonstration of a document’s DOM tree. (Part | of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

@ DOM Tree Demonstration

<« Ofile:f//C:,ﬂ’books/2011/IW3HTP5/examples/chll?/figl2_02/do&ﬁ’) @ 4 & ':h X,
(1 Links (] Publishing (www.cloud-ide.com £§ HootSuite - Social ... Q Memberly » [Other bookmarks

-~

An HTMLS Page

This page contains some basic HTMLS5 elements. The DOM tree for the document contains a DOM node for every
element

m

Here's an unordered list:

® One
* Two | 4
* Three -

Fig. 12.2 | Demonstration of a document’s DOM tree. (Part 2 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

I} @ Elemems‘ @ Resources @ Network "3 Scripts @Tlmeline

» | Q Search Elements)

v

[»

<!-- Fig. 12.2: domtree.html -->
<!-- Demonstration of a document's DOM tree. -->
<html>
¥ <head>
<meta charset="utf-8">
<title>DOM Tree Demonstration</title>
</head>
¥ <body> 3
<h1>An HTMLS Page</hl> 3
Y<p>

"This page contains some basic HTMLS elements. 1
for the document contains a DO
</p>
<p>Here's an unordered list:</p>
v
<1i>0One</1i>

<1i>Two</1i> T

<1li>Three</1i>
<ful>
<l--
FrkkEkkFrErEr kR R bR E R A E R R E R AR E R F Rk kR Rk Rk Rk kR Rk E
* (C) Copyright 1992-2812 by Deitel & Associates,
* Pearson Education, Inc. All Rights Reserved.

* DISCLAIMER: The authors and publisher of this b =

| 3

I
0 >= | Q| nm | oosy [BJ

» Computed Style
p Styles + B £
P Metrics

¥ Properties

¥ HTMLParagraphElement
align: ™"
» attributes: NamedNodeMap
baseURI: "file:///C:/books/2811/IW3HT..
childElementCount: @
» childNodes: NodelList[1]
» children: HTMLCollection[@]
» classlist: DOMTokenList
className: ""
clientHeight: 2@
clientlLeft: @
clientTop: @
clientWidth: 696
contentEditable: "inherit"
» dataset: DOMStringMap
dir: "
draggable: false
» firstChild: Text
firstElementChild: null
hidden: false
id: "
innerHTML: "Here's an unordered list:"
innerText: “"Here's an unordered list:"

[C] Show inherited «

m

Fig. 12.2 | Demonstration of a document’s DOM tree. (Part 3 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

10

12.3 Traversing and Modifying a DOM — —
Tree

» The next example demonstrates several DOM
node features and two additional document-

object methods.

= It allows you to highlight, modify, insert and
remove elements.

» CSS class highlighted is applied
dynamically to elements in the document as
we add, remove and select elements using
the form.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 11

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16

/* Fig. 12.3: style.css */
/* CSS for dom.html. */
hl, h3 { text-align: center;

font-family: tahoma, geneva, sans-serif; }

p { margin-left: 5%;
margin-right: 5%;

font-family: arial, helvetica, sans-serif; }

}

ul { margin-left: 10%; }

a { text-decoration: none;
a:hover { text-decoration: underline; }
.hav { width: 100%;

border-top: 3px dashed blue;

padding-top: 10px; }

.highlighted { background-color: vellow; }

input { width: 150px; }
form > p { margin: Opx; }

Fig. 12.3 | CSS for basic DOM functionality example.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

12

12.3 Traversing and Modifying a DOM <&

Tree (Cont.)

» We’ll manipulate the HTML5 document
dynamically by modifying its DOM.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 13

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17
18

<!DOCTYPE html>

<!-- Fig. 12.4: dom.html -->

<!-- Basic DOM functionality. -->
<html>
<head>
<meta charset = "utf-8">
<title>Basic DOM Functionality</title>
<1link rel = "stylesheet" type = "text/css" href = "style.css">
<script src = "dom.js"></script>
</head>
<body>

<hl 1id = "bigheading” class = "highlighted">
[bigheading] DHTML Object Model</hl>

<h3 1id = "smallheading”>[smallheading] Element Functionality</h3>

<p id = "paral”>[paral] The Document Object Model (DOM) allows for
quick, dynamic access to all elements in an HTML5 document for
manipulation with JavaScript.</p>

Fig. 12.4 | HTML5 document that’s used to demonstrate DOM
functionality for dynamically adding, removing and selecting
elements. (Part | of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

14

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

<p id = "para2'>[para2] For more information, check out the
"JavaScript and the DOM" section of Deitel's

[Tink] JavaScript Resource Center.</p>
<p id = "para3”>[para3] The buttons below demonstrate: (list)</p>
<ul id = "Tist">
<13 1id = "iteml">[iteml] getElementById and parentNode</1i>

<11 1id = "item2">[item2] insertBefore and appendChild</11i>
<14 id = "item3">[item3] replaceChild and removeChild</1i>

<div id = "nav"” class = "nav'>
<form onsubmit = "return false" action = "#">

<p><input type = "text"” 1id = "gbi" value = "bigheading'>
<input type = "button” value = "Get By id"
id = "byIdButton'></p>

<p><input type = "text"” 1id = "ins'>
<input type = "button” value = "Insert Before"”
id = "insertButton'></p>

<p><input type = "text" id = "append'>
<input type = "button” value = "Append Child"
id = "appendButton'></p>

Fig. 12.4 | HTML5 document that’s used to demonstrate DOM
functionality for dynamically adding, removing and selecting
elements. (Part 2 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

15

40 <p><input type = "text"” 1id = "replace'>

41 <input type = "button” value = "Replace Current”
42 id = "replaceButton() "></p>

43 <p><input type = "button” value = "Remove Current"”
44 id = "removeButton'></p>

45 <p><input type = "button” value = "Get Parent"

46 id = "parentButton'></p>

47 </form>

48 </div>

49 </body>

50 </html>

Fig. 12.4 | HTML5 document that’s used to demonstrate DOM
functionality for dynamically adding, removing and selecting
elements. (Part 3 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

16

The document when it first loads. It begins with the large heading highlighted.

(©) Basic DOM Functionality

C | © file:///C:/books/2011/IW3HTP5/examples/ch 15 £ = & {‘E] 2
(3 Links Dpublishing () www.cloud-ide.com £} HootSuite - Social ... *» (O] Other bookmarks

[bigheading] DHTML Object Model

[smallheading] Element Functionality

[para1] The Document Object Model (DOM) allows for quick, dynamic access to
all elements in an HTML5 document for manipulation with JavaScript.

[para2] For more information, check out the "JavaScript and the DOM" section
of Deitel's [link] JavaScript Resource Center.

[para3] The buttans below demonstrate:(list)

¢ [item]] getElementByld and parentNode
* [item2] insertBefore and appendChild
* [item3] replaceChild and removeChild

.bigheading
[
,

Fig. 12.4 | HTML5 document that’s used to demonstrate DOM

functionality for dynamically adding, removing and selecting
ntc (Part A nf A\

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

12.3 Traversing and Modifying a DOM — —
Tree (Cont.)

» The JavaScript code declares two variables

= Variable currentNode keeps track of the currently
highlighted node—the functionality of each button
depends on which node is currently selected.

= Variable 1dcount is used to assign a unique 1d to
any new elements that are created.

» The remainder of the JavaScript code contains
event-handling functions for the buttons
and two helper functions that are called by
the event handlers.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 18

// Fig. 12.5: dom.js

// Script to demonstrate basic DOM functionality.

var currentNode; // stores the currently highlighted node

var idcount = 0; // used to assign a unique id to new elements

// register event handlers and initialize currentNode
function start()

{

|
2
3
4
5
6
7
8

Fig. 12.5 | Script to demonstrate basic DOM functionality. (Part | of
6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

19

9 document.getElementById("byIdButton™).addEventListener(

10 "click"™, byId, false);

11 document.getElementById("insertButton"”).addEventListener(
12 "click", insert, false);

13 document.getElementById("appendButton”).addEventListener(
14 "click", appendNode, false);

15 document.getElementById("replaceButton”).addEventListener(
16 "click”™, replaceCurrent, false);

17 document.getElementById("removeButton").addEventListener(
I8 "click", remove, false);

19 document.getElementById("parentButton").addEventListener(
20 "click", parent, false);

21

22 // initialize currentNode

23 currentNode = document.getElementById("bigheading”™);

24 } // end function start

25

26 // call start after the window Toads
27 window.addEventListener("load", start, false);
28

Fig. 12.5 | Script to demonstrate basic DOM functionality. (Part 2 of
6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

29 // get and highlight an element by its id attribute
30 function byId()

31 {

32 var id = document.getElementById(“"gbi"”).value;
33 var target = document.getElementById(id);

34

35 if (target)

36 switchTo(target);

37 1} // end function byId

38

39 // insert a paragraph element before the current element
40 // using the insertBefore method
41 function insert()

42 {

43 var newNode = createNewNode(

44 document.getElementById("ins").value);

45 currentNode.parentNode.insertBefore(newNode, currentNode);
46 switchTo(newNode);

47 } // end function insert

48
Fig. 12.5 | Script to demonstrate basic DOM functionality. (Part 3 of
6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

49
50
51
52
53
54
35
56
57
58
59
60
61
62
63
64
65
66

// append a paragraph node as the child of the current node
function appendNode ()
{
var newNode = createNewNode(
document.getETementById("append”).value);
currentNode.appendChild(newNode);
switchTo(newNode);
} // end function appendNode

// replace the currently selected node with a paragraph node
function replaceCurrent()
{
var newNode = createNewNode(
document.getElementById(“replace”).value);
currentNode.parentNode.replaceChild(newNode, currentNode);
switchTo(newNode);
} // end function replaceCurrent

Fig. 12.5 | Script to demonstrate basic DOM functionality. (Part 4 of
6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

22

67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89

// remove the current node
function remove()

{
if (currentNode.parentNode == document.body)
alert("Can't remove a top-level element.");
else
{

var oldNode = currentNode;
switchTo(oldNode.parentNode);
currentNode.removeChild(oldNode);

}

} // end function remove

// get and highlight the parent of the current node
function parent()

{

var target = currentNode.parentNode;

if (target != document.body)
switchTo(target);
else
alert("No parent.");
} // end function parent

Fig. 12.5 | Script to demonstrate basic DOM functionality. (Part 5 of
6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

23

90
91
92
93
94
95
96
97
98
929
100
101
102
103
104
105
106
107
108
109
110
111
112

// helper function that returns a new paragraph node containing
// a unique 1id and the given text
function createNewNode(text)

{
var newNode = document.createElement("p");
nodeld = "new" + idcount;
++idcount;

newNode.setAttribute("id", nodeld); // set newNode's id
text = "[" + nodeld + "1 " + text;
newNode.appendChild(document.createTextNode(text));
return newNode;

} // end function createNewNode

// helper function that switches to a new currentNode
function switchTo(newNode)

{

currentNode.setAttribute("class"”,); // remove old highlighting
currentNode = newNode;
currentNode.setAttribute("class", "highlighted”); // highlight
document.getElementById("gbhi").value =

currentNode.getAttribute("id");

} // end function switchTo

Fig. 12.5 | Script to demonstrate basic DOM functionality. (Part 6 of
6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

24

12.3 Traversing and Modifying a DOM
Tree (Cont.)

Finding and Highlighting an Element Using

getElementById, setAttribute and

getAttribute

» The first row of the form allows the user to
enter the 1d of an element into the text field
and click the Get By Id button to find and
highlight the element.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 25

(©) Basic DOM Functionality >

(7 Links (] Publishing (" www.cloud-ide.com & HootSuite - Social ... » (7] Other bookmarks

C O filey///C:/books/2011/IW3HTPS fexamples/ch ¥5 €& &y 0 & OV N

[bigheading] DHTML Object Model

[smallheading] Element Functionality

[para1] The Document Object Model (DOM) allows for quick, dynamic access to
all elements in an HTMLS document for manipulation with JavaScript.

[para2] For more information, check out the "JavaScript and the DOM" section
of Deitel's [link] JavaScript Resource Center.

[para3] The buttons below demonstrate:(list)

* [item1] getElementByld and parentNode
* [item2] insertBefore and appendChild
® [item3] replaceChild and removeChild

Get By id %_]

[
) [Insert Before]
[Append Child |
[]

Replace Current

[

Remove Current]

[

Get Parent]

Fig. 12.6 | The document of Figure 12.4 after using the Get By id
button to select iteml.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

26

12.3 Traversing and Modifying a DOM —
Tree (Cont.)

» The DOM element methods setAttribute
and getAttribute allow you to modify an
attribute value and get an attribute value,
respectively.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 27

12.3 Traversing and Modifying a DOM

Tree (Cont.)

4

document object createElement method

= Creates a new DOM node, taking the tag name as an argument. It does not /nsert the
element on the page.

document object createTextNode method

= Creates a DOM node that contains only text. Given a string argument,
createTextNode inserts the string into the text node.

Method appendChild

= Inserts a child node (passed as an argument) after any existing children of the node
on which it’s called

Property parentNode contains the node’s parent
insertBefore method
= |nserts newNode as a child of the parent directly before currentNode.

replaceChild method

= Receives as its first argument the new node to insert and as its second argument the
node to replace.

removeChild method

= Remove the oldNode (a child of the new currentNode) from its place in the HTML5
document.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

28

(©) Basic DOM Functionality >

C @ file:///C/books/2011/IW3HTPS /examples/ch ¥ & @ =0 & CVLN
3 Links Dpuhlishing " www.cloud-ide.com & HootSuite - Social ... » [Other bockmarks

[bigheading] DHTML Object Model

[smallheading] Element Functionality

[para1] The Document Object Model (DOM) allows for quick, dynamic access to
all elements in an HTML5 document for manipulation with JavaScript.

[para2] For more information, check out the "JavaScript and the DOM" section
of Deitel's [link] JavaScript Resource Center.

[new0] A brand new paragraph
[para3] The buttons below demonstrate:(list)

¢ [iteml] getElementByld and parentNode
¢ [item2] insertBefore and appendChild
¢ [item3] replaceChild and removeChild

A brand new paragraph

Fig. 12.7 | The document of Figure 12.4 after selecting para3 with
the Get By id button, then using the Insert Before button to insert
paragraph before paras3s.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

@ Basic DOM Functionality =

C @ filey//C:/books/2011/IW3HTPS /examples/ch vy & B =2 & "Ei X
(7 Links (] Publishing (www.cloud-ide.com @ HootSuite - Social ... » [J Other bookmarks

[bigheading] DHTML Object Model

[smallheading] Element Functionality

[para1] The Document Object Model (DOM) allows for quick, dynamic access to
all elements in an HTML5 document for manipulation with JavaScript.

[para2] For more information, check out the "JavaScript and the DOM" section
of Deitel's [link] JavaScript Resource Center.

[new0] A brand new paragraph
[new1] A new paragraph within the brand new paragraph
[para3] The buttons below demonstrate:(list)

* [item1] getElementByld and parentNode
¢ [item2] insertBefore and appendChild
¢ [item3] replaceChild and removeChild

newl Get By id
A brand new paragraph Insert Before
A new paragraph within th Append Child x

Replace Current
Get Parent

Fig. 12.8 | The document of Figure 12.4 after using the Append
d button to append a child to the new paragraph in Figure 12.7.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(©) Basic DOM Functionality

C @ filey///C:/books/2011/IW3HTPS/fexamples/ch 17 & By =2 & ‘b aQ
3 Links Gpublishing () www.cloud-ide.com &} HootSuite - Social ... * [Other bookmarks

[bigheading] DHTML Object Model

[smallheading] Element Functionality

[para1] The Document Object Model (DOM) allows for quick, dynamic access to
all elements in an HTML5 document for manipulation with JavaScript.

[para2] For more information, check out the "JavaScript and the DOM" secfion
of Deitel's [link] JavaScript Resource Center.

[new0] A brand new paragraph
[new2] A replacement paragraph
[para3] The buttons below demonstrate:(list)

® [item]] getElementByld and parentNode
* [item2] insertBefore and appendChild
* [item3] replaceChild and removeChild

new2
A brand new paragraph
A new paragraph within th
A replacement paragraph

Fig. 12.9 | The document of Figure 12.4 after using the Replace
rrent button to replace the paragraph created in Figure 12.8.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(2) Basic DOM Functionality

C @ file:///C:/books/2011/IW3HTP5/examples/ch vy @ M & \b X
3 Links ("] Publishing (' www.cloud-ide.com [} HootSuite - Secial ... » [Other bookmarks

[bigheading] DHTML Object Model

[smallheading] Element Functionality

[para1] The Document Object Model (DOM) allows for quick, dynamic access to
all elements in an HTML5 document for manipulation with JavaScript.

[para2] For more information, check out the "JavaScript and the DOM" section
of Deitel's [link] JavaScript Resource Center.

[new0] A brand new paragraph
[para3] The buttons below demonstrate:(list)

* [item]] getElementByld and parentNode
* [item2] insertBefore and appendChild
* [item3] replaceChild and removeChild

new(
A brand new paragraph
A new paragraph within th
A replacement paragraph
| Remove Current |

Fig. 12.10 | The document of Figure 12.4 after using the Remove
Current button to remove the paragraph highlighted in Figure 12.9.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

() Basic DOM Functionality

C @ file:///C;/books/2011/IW3HTP5/examples/ch 57 = & 'ﬁ Q
"7 Links ("] Publishing (' www.cloud-ide.com & HootSuite - Social ... »* 7] Other bookmarks

[bigheading] DHTML Object Model

[smallheading] Element Functionality

[para1] The Document Object Model (DOM) allows for quick, dynamic access to
all elements in an HTML5 document for manipulation with JavaScript.

[para2] For more information, check out the "JavaScript and the DOM" section
of Deitel's [link] JavaScript Resource Center.

[new0] A brand new paragraph
[para3] The buttons below demonstrate:(list)

¢ [item]] getElementByld and parentNode
[item2] insertBefore and appendChild
* [item3] replaceChild and removeChild

o
A brand new paragraph
A new paragraph within th
A replacement paragraph
[GetParent |

Get Parent 5

Fig. 12.11 | The document of Figure 12.4 after using the Get By id
button to item2, then using the Get Parent button to select
2’s parent—the unordered list.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<

12.4 DOM Collections

» DOM has collections—groups of related objects on
a page

» DOM collections are accessed as properties of DOM
objects such as the document object or a DOM
node

» The document object has properties containing the
1mages collection, Tinks collection, forms
collection and anchors collection
= Contain all the elements of the corresponding type on the page

» The collection’s Tength property specifies the
number of items in the collection

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

34

(A
v

12.4 DOM Collections (Cont.)

You access the elements of the collection using
indices in square brackets

1tem method of a DOM collection
= An alternative to the square bracketed indices

= Receives an integer argument and returns the corresponding item
in the collection.

namedItem method

= receives an element id as an argument and finds the element with
that 1d in the collection.

href property of a DOM link node

= Refers to the link’s href attribute

Collections allow easy access to all elements of a
single type in a page

= Useful for gathering elements into one place and for applying
changes across an entire page

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

35

SOQﬂGMAUN—

whWN -

Fig.

/* Fig. 12.12: style.css */
/* CSS for collections.html. */

body
hl

p a
ul
14

Ti:first-child
Ti:Tast-child
a

a:hover

{
{

{
{
{

{
{
{
{

font-family: arial, helvetica, sans-serif }
font-family: tahoma, geneva, sans-serif;
text-align: center }

color: DarkRed }

font-size: .9em; }

display: inline;

Tist-style-type: none;

border-right: 1lpx solid gray;
padding-left: 5px; padding-right: 5px; }
padding-left: Opx; }

border-right: none; }

text-decoration: none; }
text-decoration: underline; }

12.12 | CSSfor collections.html.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

36

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

<!DOCTYPE html>

<!-- Fig. 12.13: collections.html -->

<!-- Using the Tinks collection. -->
<html>
<head>

<meta charset="utf-8">
<title>Using Links Collection</title>

<link rel = "stylesheet” type = "text/css" href = "style.css">
<script src = "collections.js"></script>
</head>
<body>
<hl>Deitel Resource Centers</hl>
<p>Deitel's website
contains a growing
Tist

of Resource Centers on a wide range of topics. Many
Resource centers related to topics covered in this book,
Internet &
World Wide Web How to Program, 5th Edition. We have
Resource Centers on

Web 2.0,
Firefox and
Internet Explorer 9,

Fig. 12.13 | Using the Tinks collection. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 37

25
26
27
28
29
30
31

<a href "http://www.deitel.com/HTML5">HTML5, and
JavaScript.
Watch for related new Resource Centers.</p>
<p>Links in this page:</p>
<div id = "Tinks"></div>
</body>
</html>

@ Using Links Collection X

C @ filey///C:/books/2011/IW3HTP5/examples/ch12/fig12_12-14/collectior 77 &

Deitel Resource Centers

Deitel's website contains a growing list of Resource Centers on a wide range of topics.
Many Resource centers related to topics covered in this book, Internet & World Wide Web
How to Program, 5th Edition. We have Resource Centers on Web 2.0, Firefox and Internet
Explorer 9, HTML5, and JavaScript. Watch for related new Resource Centers.

Links in this page:

Deitel's website | list of Resource Centers | Internet & World Wide Web How to Program, 5th
Edition | Web 2.0 | Firefox | Internet Explorer 9 | HTMLS | JavaScript

Fig. 12.13 | Using the Tinks collection. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

38

OVoOoO~NOTNDE WN =—

10
11
12
13
14
I5
16
17
18
19
20

// Fig. 12.14: collections.js

// Script to demonstrate using the links collection.

function processLinks()

{
var linksList = document.links; // get the document's Tinks
var contents = "";

// concatenate each Tlink to contents
for (var i = 0; i < TinksList.length; ++i)

{
var currentLink = TlinksList[i];
contents += "" +
currentLink.innerHTML + "</T11i>";
} // end for

contents += "";
document.getElementById("1Tinks").innerHTML = contents;
} // end function processLinks

window.addEventListener("load"”, processLinks, false);

Fig. 12.14 | Script to demonstrate using the links collection.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

39

12.5 Dynamic Styles

An element’s style can be changed dynamically
= E.g., in response to user events

= Can create mouse-hover effects, interactive menus and
animations

The document object’s body property

= Refers to the body element

The setAttribute method is used to set the
sty le attribute with the user-specified color for
the background-color CSS property.

If you have predefined CSS style classes defined for
your document, you can also use the
setAttribute method to set the class attribute.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A
v

40

I <!DOCTYPE html>

2

3 <!-- Fig. 12.15: dynamicstyle.html -->
4 <!-- Dynamic styles. -->

5 <html>

6 <head>

7 <meta charset="utf-8">

8 <title>Dynamic Styles</title>

9 <script src = "dynamicstyle.js"></script>
10 </head>

11 <body>

12 <p>Welcome to our website!</p>
13 </body>

14 </html>

VJavascript

Enter a color name for the background of this page

cyan

oK M[Cancel

Fig. 12.15 | Dynamic styles. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

41

@ Dynamic Styles

= C O file///C/books/2011/W3 vy & &y @ \‘ﬁ Q
(7] Links (C] Publishing " www.cloud-ide.com » [Other bookmarks

-

-

Fig. 12.15 | Dynamic styles. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 42

} // end function start

I // Fig. 12.16: dynamicstyle.js

2 // Script to demonstrate dynamic styles.
3 function start()

4 {

5 var inputColor = prompt("Enter a color name for the " +
6 "background of this page”, "");

7 document.body.setAttribute("style”,

8 "background-color: " + inputColor);
9

0

1

window.addEventListener("load", start, false);

Fig

. 12.16 | Script to demonstrate dynamic styles.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

43

12.6 Using a Timer and Dynamic
Styles to Create Animated Effects

» The next example introduces the window object’s
setInterval and clearInterval methods,
combining them with dynamic styles to create
animated effects.

» This example is a basic image viewer that allows
you to select a book cover and view it in a larger
size. When the user clicks a thumbnail image, the

larger version grows from the top-left corner of the
main image area.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

44

I /* Fig. 12.17: style.css */

2 /* (CSS for coverviewer.html. */

3 #thumbs { width: 192px;

4 height: 370px;

5 padding: 5px;

6 float: left }

7 #mainimg { width: 289px;

8 padding: 5px;

9 float: left }
10 #imgCover { height: 373px }
Il img { border: lpx solid black }

Fig. 12.17 | CSS for coverviewer.html.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

45

I <!DOCTYPE html>

2

3 «!-- Fig. 12.18: coverviewer.htm]l -->

4 <!-- Dynamic styles used for animation. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Deitel Book Cover Viewer</title>
9 <link rel = "stylesheet" type = "text/css" href = "style.css">
10 <script src = "coverviewer.js'"></script>
11 </head>

Fig. 12.18 | Dynamic styles used for animation. (Part | of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

46

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

<body>
<div id = "mainimg">
<img id = "imgCover” src = "fullsize/jhtp.jpg"
alt = "Full cover image'>
</div>
<div id = "thumbs" >
<img src = "thumbs/jhtp.jpg"” id = "jhtp"
alt = "Java How to Program cover">
<img src = "thumbs/iw3htp.jpg"” id = "iw3htp"
alt = "Internet & World Wide Web How to Program cover's
<img src = "thumbs/cpphtp.jpg” id = "cpphtp”
alt = "C++ How to Program cover's>
<img src = "thumbs/jhtplov.jpg” id = "jhtplov"
alt = "Java How to Program LOV cover'>
<img src = "thumbs/cpphtplov.jpg"” id = "cpphtplov”
alt = "C++ How to Program LOV cover"s>
<img src = "thumbs/vcsharphtp.jpg"” id = "vcsharphtp"
alt = "Visual C# How to Program cover">
</div>
</body>
</html>

Fig. 12.18 | Dynamic styles used for animation. (Part 2 of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

47

a) The cover viewer page loads with the cover of Java How to Program, 9/e

O Deitel Book Cover Viewer

C @ file///C:/books/2011/IW3HTP5/examples/ch12/figl2_17-19/coverviewer.html T3 X\

Java g

HOW TO PROGRAM

doph

: DEITEI

HOW TO PROGRAM

| EDITION

UL DEITEL
RVEY DEITEL

12.18 | Dynamic styles used for animation. (Part 3 of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

48

b) When the user clicks the thumbnail of Internet & World Wide Web How to Program, 5/e, the full-
size image begins growing from the top-left corner of the window

(©) Deitel Book Cover Viewer >

Warld Wide Web,,

HOW TO PROGRAM

C @ file///C/books/2011/IW3HTP5/examples/ch12/figl2_17-19/coverviewerhtml T3

Fig. 12.18 | Dynamic styles used for animation. (Part 4 of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

49

c) The cover continues to grow

® Deitel Book Cover Viewer ~

C @ file:///C:/books/2011/IW3HTP5/examples/ch12/figl2_17-19/coverviewerhtml ¢ X

. TU” F nternetd X
- Woeld Wide We!
ternet& oX. RACMCRRNE |

Warld Wide Web,,

HOW TO PROGRAM

CHamo

Y 3 ARG

. 12.18 | Dynamic styles used for animation. (Part 5 of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

50

d) The animation finishes when the cover reaches its full size

@ Deitel Book Cover Viewer =

C @ file///C;/books/2011/IW3HTP5/examples/ch12/fig12_17-19/coverviewerhtml %y | 3

w

ternet& o

\Warld Wide Web.,

HOW TO PROGRAM

Fig. 12.18 | Dynamic styles used for animation. (Part 6 of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

51

I // Fig. 12.19: coverviewer.js

2 // Script to demonstrate dynamic styles used for animation.
3 var interval = null; // keeps track of the interval

4 var speed = 6; // determines the speed of the animation
5 var count = 0; // size of the image during the animation
6

7 // called repeatedly to animate the book cover

8 function run()

9 {

10 count += speed;

|

12 // stop the animation when the image is large enough
13 if (count >= 375)

14 {

15 window.clearInterval(interval);

16 interval = null;

17 } // end if

18

19 var bigImage = document.getElementById("imgCover™);
20 bigImage.setAttribute("style”, "width: " + (0.7656 * count + "px:;") +
21 "height: " + (count + "px;"));
22 1} // end function run
23

Fig. 12.19 | Script to demonstrate dynamic styles used for animation.
(Part | of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

24
25
26
27
28
29
30
31
32
33
34
35
36
37

// inserts the proper image into the main image area and
// begins the animation
function display(imgfile)
{
if (interval)
return;

var bigImage = document.getElementById("imgCover™);
bigImage.setAttribute("style”, "width: Opx; height: Opx;");
bigImage.setAttribute("src”, "fullsize/" + imgfile);
bigImage.setAttribute("alt"”, "Large version of " + imgfile);
count = 0; // start the image at size 0
interval = window.setInterval(“"run()", 10); // animate

} // end function display

Fig. 12.19 | Script to demonstrate dynamic styles used for animation.
(Part 2 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

53

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Fig.

// register event handlers
function start()
{
document.getElementById("jhtp").addEventListener(
"click”™, function() { display("jhtp.jpg"”); }, false);
document.getElementById("iw3htp").addEventListener(
"click", function() { display("iw3htp.jpg"); }, false);
document.getElementById("cpphtp”).addEventListener(
"click", function() { display("cpphtp.jpg"); }, false);
document.getElementById("jhtplov").addEventListener(
"click"”, function() { display("jhtplov.jpg"); }, false);
document.getElementById("cpphtplov").addEventListener(
"click", function() { display("cpphtplov.ijpg"); }, false);
document.getElementById("vcsharphtp™).addEventListener(
"click", function() { display("vcsharphtp.ijpg”); }, false);
} // end function start

window.addEventListener("load", start, false);

12.19 | Script to demonstrate dynamic styles used for animation.

(Part 3 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

54

12.6 Using a Timer and Dynamic Styles— —
to Create Animated Effects (Cont.)

» setInterval method of the window object

= Repeatedly executes a statement on a certain interval
= Takes two parameters

- A statement to execute repeatedly
- An integer specifying how often to execute it, in milliseconds
= Returns a unique identifier to keep track of that particular interval.
» window object’s clearInterval method

= Stops the repetitive calls of object’s setInterval method

= Pass to clearInterval the interval identifier that setInterval
returned

» Anonymous function

= Defined with no name—it’s created in nearly the same way as any
other function, but with no identifier after the keyword function.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 55

