Chapter 13

JavaScript Events

Internet & World Wide Web
How to Program, 5/e




OBJECTIVES
In this chapter you'll:

m Learn the concepts of events, event handlers and event bubbling.
m Create and register event handlers that respond to mouse and keyboard events.
m Use the event object to get information about an event.

m Recognize and respond to many common events.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




13.1 Introduction

13.2 Reviewing the 1oad Event

13.3 Event mousemove and the event Object

13.4 Rollovers with mouseover and mouseout

13.5 Form Processing with focus and blur

13.6 More Form Processing with submit and reset
13.7 Event Bubbling

13.8 More Events

13.9 Web Resource

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




13.1 Introduction

» JavaScript events
= allow scripts to respond to user interactions and
modify the page accordingly
» Events and event handling

= help make web applications more dynamic and
Interactive

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

(A

v




<

13.2 Reviewing the load Event

» The window object’s 1oad event fires when
the window finishes Ioadmg successfully
(i.e., all its children are loaded and all
external files referenced by the page are
loaded)

» Every DOM element has a load event, but
it's mtost commonly used on the window
object.

» The next example reviews the load event.

» The Toad event’s handler creates an interval
timer that updates a span with the number
of seconds that have elapsed since the
document was loaded. The document’s

paragraph contains the span.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.



I <!DOCTYPE html>

2

3 <!-- Fig. 13.1: onload.html -->

4 <!-- Demonstrating the load event. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>load Event</title>

9 <link rel = "stylesheet" type = "text/css" href = "style.css">
10 <script src = "load.js"></script>
11 </head>
12 <body>
13 <p>Seconds you have spent viewing this page so far:
14 <span 1id = "soFar">0</span></p>
15 </body>
16 </html>

Fig. 13.1 | Demonstrating the window’s Toad event. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




@ load Event
€« C O filey///C:/books/2011/IW: 55 X

Seconds you have spent viewing this page so far: 18

Fig. 13.1 | Demonstrating the window’s Toad event. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




I // Fig. 13.2: load.js

2 // Script to demonstrate the load event.

3 var seconds = 0;

4

5 // called when the page loads to begin the timer
6 function startTimer()

7 {

8 window.setInterval ( "updateTime()", 1000 );

9 1} // end function startTimer
10

Il // called every 1000 ms to update the timer
12 function updateTime()

13 {

14 ++seconds;

15 document.getElementById( "soFar" ).innerHTML = seconds;
16 } // end function updateTime

17

I8 window.addEventListener( "load", startTimer, false );

Fig. 13.2 | Script that registers window’s Toad event handler and
handles the event.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




]

3.2 Reviewing the load Event

(Cont.)

4

An event handler is a function that responds to an
event.

Assigning an event handler to an event on a DOM
nodé€ is called registering an event handler

Method addEventListener can be called multiple
times on a DOM node to register more than one
event-handling method for an event.

It’s also possible to remove an event listener by
calling removeEventListener with the same

arguments that you passed to addEventListener
toregister the event handler.

If a script in the head attempts to get a DOM node
for an HTML element in the odx, getElementById
returns null because the body has not yet loadéed

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.



13.2 Reviewing the load Event —

(Cont.)

» Two models for registering event handlers
* Inline model treats events as attributes of HTML elements

. Tra(ljditional model assigns the name of the function to the event property of a DOM
node

» The inline model places calls to JavaScript functions directly in
HTML code.

» The following code indicates that JavaScript function start
should be called when the body element loads:

<body onload = "start(Q)">

» The traditional model uses a property of an object to specify
an event handler.

» The following JavaScript code indicates that function start
should be called when document loads:

document.onload = "start()";

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v




13.3 Event mouseMove and the event
Object

» mousemove event occurs whenever the user moves the mouse
over the web page

» The next example creates a simple drawing program that
allows the user to draw inside a table element in red or blue

by holding down the ShA/ift key or Ctr/ key and moving the
mouse over the box.

= ctrlKey property contains a boolean which reflects whether the Ctr/key was pressed
during the event

= shiftKey property reflects whether the Shift key was pressed during the event

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.




I <!DOCTYPE html>

2

3 <«!-- Fig. 13.3: draw.html -->

4 <!-- A simple drawing program. -->

5 <html>

6 <head>

7 <meta charset="utf-8">

8 <title>Simple Drawing Program</title>

9 <link rel = "stylesheet” type = "text/css" href = "style.css">
10 <script src = "draw.js"></script>
11 </head>
12 <body>
13 <table 1id = "canvas">
14 <caption>Hold <em>Ctrl</em> (or <em>Control</em>) to draw blue.
15 Hold <em>Shift</em> to draw red.</caption>
16 <tbody 1id = "tablebody"></tbody>
17 </table>
I8 </body>
19 </html>

Fig. 13.3 | Simple drawing program. (Part | of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




hitreyand PO
Sh[ﬂ key and () Simple Drawing Program

moves the mouse 2 C Ofley//cve @ @@= & QQE N

to draw in red. Hold C##i (or Control) to draw biue. Hold Shift to draw red.

ANOUSE,

Fig. 13.3 | Simple drawing program. (Part 2 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




AP ren .
C’tr[ key ar]d () Simple Drawing Program >

moves the mouse 2 C Qfiley//civz| @ @@ = & QE A

to draw in blue. Hold Ctl (or Control) to draw blue. Hold Shift to draw red.

TAWSE

eVENTS

Fig. 13.3 | Simple drawing program. (Part 3 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17
18
19
20
21

// Fig. 13.4: draw.js
// A simple drawing program.
// initialization function to insert cells into the table
function createCanvas()
{
var side = 100;
var tbody = document.getElementById( "tablebody" );

for (var i = 0; i < side; ++i )

{

var row = document.createElement( "tr" );

for (var j = 0; j < side; ++j )

{
var cell = document.createElement( "td" );
row.appendChild( cell );

} // end for

tbody.appendChild( row );
} // end for

Fig. 13.4 | JavaScript code for the simple drawing program. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




22 // register mousemove listener for the table

23 document.getElementById( "canvas" ).addEventListener(
24 "mousemove”, processMouseMove, false );

25 1} // end function createCanvas

26

27 // processes the onmousemove event
28 function processMouseMove( e )

29 {

30 if ( e.target.tagName.tolLowerCase() == "td" )

31 {

32 // turn the cell blue if the Ctrl key 1is pressed
33 if ( e.ctrlKey )

34 {

35 e.target.setAttribute( "class™, "blue" );

36 } // end if

37

38 // turn the cell red if the Shift key is pressed
39 if ( e.shiftKey )

40 {

41 e.target.setAttribute( "class”™, "red” );

42 } // end if

43 Y // end if

44 } // end function processMouseMove

45

46 window.addEventListener( "load", createCanvas, false );

Fig. 13.4 | JavaScript code for the simple drawing program. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




Property Description

altKey This value is true if the A/ key was pressed when the event fired.

cancelBubble Set to true to prevent the event from bubbling. Defaults to false.

(See Section 13.7, Event Bubbling.)

clientX and clientY The coordinates of the mouse cursor inside the client area (i.e., the
active area where the web page is displayed, excluding scrollbars,
navigation buttons, etc.).

ctrikey This value is true if the Ctr/ key was pressed when the event fired.

keyCode The ASCII code of the key pressed in a keyboard event. See
Appendix D for more information on the ASCII character set.

screenX and screenY The coordinates of the mouse cursor on the screen coordinate sys-
tem.

shiftKey This value is true if the Shiff key was pressed when the event fired.

target The DOM object that received the event.

type The name of the event that fired.

Fig. 13.5 | Some event-object properties.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




13.4 Rollovers with mouseover and
mouseout

» When the mouse cursor enters an element, an
mouseover event occurs for that element

» When the mouse cursor leaves the element, a
mouseout event occurs for that element

» Creating an Image object and setting its src
property preloads the image

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.




I <!DOCTYPE html>

2

3 <!-- Fig 13.6: mouseoverout.htm] -->

4 <!-- Events mouseover and mouseout. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Events mouseover and mouseout</title>

9 <link rel = "stylesheet” type = "text/css" href = "style.css">
10 <script src = "mouseoverout.js''></script>
11 </head>
12 <body>
13 <hl><img src = "headingl.png" 1id = "heading"
14 alt = "Heading Image"></hl>
15 <p>Can you tell a color from its hexadecimal RGB code
16 value? Look at the hex code, guess its color. To see
17 what color it corresponds to, move the mouse over the
18 hex code. Moving the mouse out of the hex code's table
19 cell will display the color name.</p>

Fig. 13.6 | HTML5 document to demonstrate mouseover and
mouseout. (Part | of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




20 <div>

21 <ul>

22 <11 id = "Black">#000000</11i>
23 <11 id = "Blue">#0000FF</11i>
24 <11 id = "Magenta">#FFOOFF</11>
25 <14 1id = "Gray">#808080</11>
26 <11 1id = "Green">#008000</11i>
27 <1i 1id = "Lime">#00FF00</11>
28 <1i 1id = "Maroon">#800000</11>
29 <1i id = "Navy">#000080</11i>
30 <11 id = "0T1ive">#808000</11i>
31 <11 id = "Purple">#800080</11i>
32 <11 1id = "Red">#FF0000</11i>

33 <11 id = "Silver">#C0C0C0</T11i>
34 <11 id = "Cyan">#00FFFF</1i>
35 <14 1id = "Teal">#008080</11>
36 <1i id = "Yellow">#FFFF00</11>
37 <14 id = "White">#FFFFFF</14i>
38 </ul>

39 </div>

40 </body>

41 </html>

Fig. 13.6 | HTMLS document to demonstrate mouseover and
mouseout. (Part 2 of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




a) The page loads with the blue heading image and all the hex codes in black.

(©) Events mouseover and mo. >

& C O file///C/books/2011/W3HYy & B =2 & & @ X

Blue image —§— ﬂ.xgd.l

Can vou tell a color from its hexadecimal RGB code value? Look at the hex code,
guess its color. To see what color it corresponds to, move the mouse over the hex
code. Moving the mouse out of the hex code's table cell will display the color name.

#000000 #0000FF #FFOOFF #808080
#008000 #00FFO0 #800000 #000080
#808000 #800080 #FF0000 #CoCoCO
#00FFFF #008080 #FFFFOO0 #FFFFFF

Fig. 13.6 | HTML5 document to demonstrate mouseover and
mouseout. (Part 3 of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




b) The heading image switches to an image with green text when the mouse rolls over it.

(©) Events mouseover and mo. »

€ C' O file///C/books/2011/W3HYy & B = & @ A

Green image —4— H.xt&%d..

Can you tell a color from its hexadecimal RGB code value? Look at the hex code.
guess its color. To see what color it corresponds to, move the mouse over the hex
code. Moving the mouse out of the hex code's table cell will display the color name.

#000000 #0000FF #FFOOFF #808080
#008000 #00FF00 #800000 #000080
#808000 #800080 #FF0000 #cococo
#00FFFF #008080 #FFFFOO #FFFFFF

Fig. 13.6 | HTML5 document to demonstrate mouseover and
mouseout. (Part 4 of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




¢) When mouse rolls over a hex code, the text color changes to the color represented by
the hex code. Notice that the heading image has become blue again because the mouse
is no longer over it.

(©) Events mouseover and mo!

& C | © filey///C//books/2011/W3HYy & @y =2 & "Enﬂ L8
Hex Codes

Can vou tell a color from its hexadecimal RGB code value? Look at the hex code,
guess its color. To see what color it corresponds to, move the mouse over the hex

code. Moving the mouse out of the hex code's table cell will display the color name.
Text now —_||

displayed in
#000000 #DDDDIﬂ:F #FFOOFF #808080
blue #008000 #00FFOO #800000 #000080
#808000 #800080 #FF0O000 #Ccococo
#00FFFF #008080 #FFFFOOD #FFFFFF

Fig. 13.6 | HTML5 document to demonstrate mouseover and
mouseout. (Part 5 of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




d) When the mouse leaves the hex code’s table cell, the text changes to the name of the color.

(©) Events mouseover and mo. »

& C O file///C:/books/2011/IW3HYy & @y =2 & S = N
Hex Codes

Can you tell a color from its hexadecimal RGB code value? Look at the hex code,
guess its color. To see what color it corresponds to, move the mouse over the hex
code. Moving the mouse out of the hex code's table cell will display the color name.

#000000 Blue #FFOOFF #808080
#008000 #00FF00 #800000 #000080
#808000 #800080 #FF0000 #Ccococo
#00FFFF #008080 #FFFFOO #FFFFFF

Fig. 13.6 | HTML5 document to demonstrate mouseover and
mouseout. (Part 6 of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




S Performance Tip 13.1

s

<> Preloading images used in rollover effects prevents a
delay the first time an image is displayed.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.



I // Fig 13.7: mouseoverout.js

2 // Events mouseover and mouseout.

3 1imagel = new Image();

4 1imagel.src = "headingl.png";

5 1image2 = new Image();

6 1image2.src = "heading2.png";

7

8 function mouseOver( e )

9 {

10 // swap the image when the mouse moves over it

11 if ( e.target.getAttribute( "id" ) == "heading"” )

12 {

13 e.target.setAttribute( "src', image2.getAttribute( "src” ) );
14 } // end if

I5

16 // if the element is an 1i, assign its id to its color
17 // to change the hex code's text to the corresponding color
18 if ( e.target.tagName.tolLowerCase() == "1i" )

19 {
20 e.target.setAttribute( "style",
21 "color: " + e.target.getAttribute( "id" ) );
22 } // end if

23 } // end function mouseOver

Fig. 13.7 | Processing the mouseover and mouseout events. (Part |
of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




24
25 function mouseQut( e )

26 {

27 // put the original image back when the mouse moves away
28 if ( e.target.getAttribute( "id" ) == "heading" )

29 {

30 e.target.setAttribute( "src", imagel.getAttribute( "src" ) );
31 } // end if

32

33 // if the element is an 1i, assign its id to innerHTML
34 // to display the color name

35 if ( e.target.tagName.tolLowerCase() == "T1i" )

36 {

37 e.target.innerHTML = e.target.getAttribute( "id" );
38 } // end if

39 } // end function mouseQOut

40

41 document.addEventListener( "mouseover', mouseOver, false );
42 document.addEventListener( "mouseout', mouseOut, false );

Fig. 13.7 | Processing the mouseover and mouseout events. (Part 2
of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




13.5 Form Processing with focus and
blur

» focus event fires when an element gains
focus

= j.e., when the user clicks a form field or uses the
Tab key to move between form elements

» blur fires when an element loses focus
= i.e., when another control gains the focus

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.




I <!DOCTYPE html>

2

3 <!-- Fig. 13.8: focusblur.html -->

4 <!-- Demonstrating the focus and blur events. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>A Form Using focus and blur</title>

9 <link rel = "stylesheet” type = "text/css" href = "style.css">
10 <script src = "focusblur.js"></script>

11 </head>

12 <body>

13 <form id = "myForm" action = "">

14 <p><label class = "fixed” for = "name'>Name:</l1abel>
15 <input type = "text” id = "name"”

16 placeholder = "Enter name'></p>

17 <p><label class = "fixed" for = "email”>E-mail:</label>
18 <input type = "email” id = "email”

19 placeholder = "Enter e-mail address"></p>
20 <p><label>Click here if you like this site
21 <input type = 'checkbox" id = "like"></l1abel></p>
22 <p><label for = "comments'>Any comments?</p>
23 <textarea id = “comments”
24 placeholder = "Enter comments here''></textarea>

Fig. 13.8 | Demonstrating the focus and b1ur events. (Part | of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




25 <p><input 1id = "submit” type = "submit">
26 <input 1id = "reset” type = "reset'></p>
27 </form>
28 <p id = "helpText"></p>
29 </body>
30 </html>
a) The blue
message at the W
bottom of the page C Oferte & @ = & Q3 A
instructs the user
to enter a name Name: [ I }
when the Name: E-mail

field has the focus. Click here if you like this site [

Any comments?

| Submit | | Reset |

Enter your name in this input box. help text in blue

Fig. 13.8 | Demonstrating the focus and b1ur events. (Part 2 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




b) The message
changes () A Form Using focus and bl »

depending on ile: o & Q

which field has AULEAYE RN RCY-
focus—this Name:  [rro e "

window shows Emal  [fo oo coiees ‘

the help text for
the comments
textarea.

Click here if vou like this site [
Any comments?

[ Submit } [ Reset ]

Enter any comments here that you'd like us to read.

Fig. 13.8 | Demonstrating the focus and blur events. (Part 3 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




I // Fig. 13.9: focusblur.js

2 // Demonstrating the focus and blur events.

3 var helpArray = [ "Enter your name in this input box.",

4 "Enter your e-mail address 1in the format user@domain.",

5 "Check this box if you 1liked our site.",

6 "Enter any comments here that you'd 1like us to read."”,

7 "This button submits the form to the server-side script."”,
8 "This button clears the form."™, "" ];

9 var helpText;

10

Il // initialize helpTextDiv and register event handlers
12 function init(Q)

13 {

14 helpText = document.getElementById( "helpText™ );

I5

16 // register listeners

17 registerListeners( document.getElementById( "name™ ), 0 );
18 registerListeners( document.getElementById( "email”™ ), 1 );
19 registerListeners( document.getElementById( "like"™ ), 2 );
20 registerListeners( document.getElementById( "comments” ), 3 );
21 registerListeners( document.getElementById( "submit™ ), 4 );
22 registerListeners( document.getElementById( "reset™ ), 5 );
23 } // end function init

24

Fig. 13.9 | Demonstrating the focus and b1ur events. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




25 // utility function to help register events
26 function registerListeners( object, messageNumber )

27 {

28 object.addEventListener( "focus",

29 function() { helpText.innerHTML = helpArray[ messageNumber ]; },
30 false );

31 object.addEventListener( "blur",

32 function() { helpText.innerHTML = helpArray[ 6 ]; }, false );

33 1} // end function registerListener

34

35 window.addEventListener( "load", init, false );

Fig. 13.9 | Demonstrating the focus and blur events. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




[«
13.6 More Form Processing with subm1 LLJ_
and reset

» submit and reset events fire when a form is submitted or
reset, respectively

» The anonymous function executes in response to the user’s
submitting the form by clicking the Submit button or pressing
the Enter key.

» confirm method asks the users a question, presenting them

with an OK button and a Cancel button
= |f the user clicks OK, confirmreturns true; otherwise, confirmreturns false

» By returning either true or false, event handlers dictate
whether the default action for the event is taken

» If an event handler returns true or does not return a value,
the default action is taken once the event handler finishes
executing

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.




I // Fig. 13.10: focusblur.js

2 // Demonstrating the focus and blur events.

3 var helpArray = [ "Enter your name in this input box.",

4 "Enter your e-mail address 1in the format user@domain.",

5 "Check this box if you 1liked our site.",

6 "Enter any comments here that you'd 1like us to read."”,

7 "This button submits the form to the server-side script."”,
8 "This button clears the form."™, "" ];

9 var helpText;

10

Il // initialize helpTextDiv and register event handlers
12 function init(Q)

13 {

14 helpText = document.getElementById( "helpText™ );

I5

16 // register listeners

17 registerListeners( document.getElementById( "name™ ), 0 );
18 registerListeners( document.getElementById( "email”™ ), 1 );
19 registerListeners( document.getElementById( "like"™ ), 2 );
20 registerListeners( document.getElementById( "comments” ), 3 );
21 registerListeners( document.getElementById( "submit™ ), 4 );
22 registerListeners( document.getElementById( "reset™ ), 5 );
23

24 var myForm = document.getElementById( "myForm" );

Fig. 13.10 | Demonstrating the focus and b1ur events. (Part | of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

myForm.addEventListener( "submit",
function()
{
return confirm( "Are you sure you want to submit?" );
}, // end anonymous function
false );
myForm.addEventListener( "reset",
function()
{
return confirm( "Are you sure you want to reset?" );
}, // end anonymous function
false );
} // end function init

// utility function to help register events
function registerListeners( object, messageNumber )
{
object.addEventListener( "focus",
function() { helpText.innerHTML
false );
object.addEventListener( "blur",
function() { helpText.innerHTML
} // end function registerListener

helpArray[ messageNumber ]; },

helpArray[ 6 ]; }, false );

window.addEventListener( "load", init, false );

Fig. 13.10 | Demonstrating the focus and bTur events. (Part 2 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




@ A Form Using focus and bl >

C Ofile//vs & ) = & 5 -

Name: iH awey ‘

E-mail: Ideitei@deitel_com ‘

Click here if you like this site
Any comments?

Informative. Resource Centers are
helpful!|

( Suhnw | Reset |

Enter any comments here that you'd like us to read.

y 4

Are you sure you want to submit?

Cancel

Fig. 13.10 | Demonstrating the focus and bT1ur events. (Part 3 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




13.7 Event Bubbling

» Event bubbling

= The process whereby events fired on child elements
“bubble” up to their parent elements

= When an event is fired on an element, it is first
delivered to the element’s event handler (if any),
then to the parent element’s event handler (if any)

v If you intend to handle an event in a child
element alone, you should cancel the
bubbling of the event in the child element’s
event-handling code by using the
cancelBubble property of the event object

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.




OVoOoO~NOTNDE WN =—

10
11
12
13
14
15

<!DOCTYPE html>

<!-- Fig. 13.11: bubbling.html -->
<!-- Canceling event bubbling. -->
<html>
<head>
<meta charset="utf-8">
<title>Event Bubbling</title>
<script src = "bubbling.js">
</head>
<body>
<p 1id
<p 1id
</body>
</html>

"bubble”>Bubbling enabled.</p>
"noBubble">Bubbling disabled.</p>

Fig. 13.11 | Canceling event bubbling. (Part | of 3.)

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.




a) User clicks the first
paragraph, for which (©) Event Bubbling x
bubbling is enabled. ) o
€ o C Ofile///C/oookyz @ @ = & & H A

Bubbling[enabled. ‘

Bubbling disabled. L=

b) Paragraph’s event  [FFFSSSETES
handler causes an
alert. This will bubble.

c) Document’s event  [FFFSSSETRS x|

handler causes
another alert, You clicked in the document.
because the event
bubbles up to the
document.

["] Prevent this page from creating additional dialogs.

Fig. 13.11 | Canceling event bubbling. (Part 2 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




d) User clicks the
second paragraph,
for which bubbling is
disabled.

e) Paragraph’s event
handler causes an
alert. The
document’s event
handler is not called.

(©) Event Bubbling X

€ > C Ofile///C/oookvs & B &= & & E A

Bubbling enabled.

m

Bubbling Jisabled.

1

Javascript Alert

This will not bubble.

Fig. 13.11 | Canceling event bubbling. (Part 3 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




Common Programming Error 13.1

Forgetting to cancel event bubbling when necessary may
cause unexpected results in your scripts.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.



I // Fig. 13.12: bubbling.js

2 // Canceling event bubbling.

3 function documentClick()

4 {

5 alert( "You clicked in the document." );
6 1} // end function documentClick

7

8 function bubble( e )

9 {

10 alert( "This will bubble.” );
11 e.cancelBubble = false;
12 } // end function bubble
13
14 function noBubble( e )
15 {
16 alert( "This will not bubble." );
17 e.cancelBubble = true;
I8 } // end function noBubble
19

Fig. 13.12 | Canceling event bubbling. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




20 function registerEvents()

21 {

22 document.addEventListener( "click", documentClick, false );
23 document.getElementById( "bubble"” ).addEventListener(

24 "click", bubble, false );

25 document.getElementById( "noBubble™ ).addEventListener(

26 "click"™, noBubble, false );

27 } // end function registerEvents

28

29 window.addEventListener( "load", registerEvents, false );

Fig. 13.12 | Canceling event bubbling. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




<

13.8 More Events

» The following slide lists
and their descriptions.
names begin with "on",

some common events
"he actual DOM event
out we show the

names you use with add

EventListener here.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

v



Description

abort Fires when image transfer has been interrupted by user.

change Fires when a new choice is made in a select element, or when a
text input is changed and the element loses focus.

click Fires when the user clicks the mouse.
dblclick Fires when the user double clicks the mouse.
focus Fires when a form element gets the focus.
keydown Fires when the user pushes down a key.
keypress Fires when the user presses then releases a key.
keyup Fires when the user releases a key.

load Fires when an element and all its children have loaded.
mousedown Fires when a mouse button is pressed.
mousemove Fires when the mouse moves.

mouseout Fires when the mouse leaves an element.
mouseover Fires when the mouse enters an element.

Fig. 13.13 | Common events. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




Description

mouseup
reset

resize

select

submit

unload

Fires when a mouse button is released.
Fires when a form resets (i.e., the user clicks a reset button).

Fires when the size of an object changes (i.e., the user resizes a
window or frame).

Fires when a text selection begins (applies to input or tex-
tarea).

Fires when a form is submirtted.

Fires when a page is about to unload.

Fig. 13.13 | Common events. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.




