
Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Internet & World Wide Web
How to Program, 5/e

Copyright © Pearson, Inc. 2013. All Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The canvas element, which you’ll learn to use in
this chapter, provides a JavaScript application
programming interface (API) with methods for
drawing two-dimensional bitmapped graphics
and animations, manipulating fonts and images,
and inserting images and videos.
◦ Due to the large number of examples in this chapter,

most of the examples use embedded JavaScripts.

 A key benefit of canvas is that it’s built into the
browser, eliminating the need for plug-ins like
Flash and Silverlight, thereby improving
performance and convenience and reducing
costs.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 To begin drawing, we first must understand canvas’s coordinate
system (Fig. 14.1), a scheme for identifying every point on a
canvas.

 By default, the upper-left corner of a canvas has the coordinates
(0, 0).

 A coordinate pair has both an x-coordinate (the horizontal
coordinate) and a y-coordinate (the vertical coordinate).

 The x-coordinate is the horizontal distance to the right from the
left border of a canvas.

 The y-coordinate is the vertical distance downward from the top
border of a canvas.

 The x-axis defines every horizontal coordinate, and the y-axis
defines every vertical coordinate.

 You position text and shapes on a canvas by specifying their x
and y-coordinates.

 Coordinate space units are measured in pixels (“picture
elements”), which are the smallest units of resolution on a
screen.

 Copyright © Pearson, Inc. 2013. All

Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 14.2 demonstrates how to draw a
rectangle with a border on a canvas.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Creating a Canvas
 The canvas element has two attributes—width and height.

 The default width is 300 and the default height 150.

 We create a canvas starting with a canvasID—in this case,
"drawRectangle".

 Assigning a unique ID to a canvas allows you to access it like
any other element, and to use more than one canvas on a
page.

 Next, we specify the canvas’s width (300) and height (100),
and a border of 1px solid black. You do not need to
include a visible border.

 We include the fallback text Your browser does not support
canvas. This will appear if the user runs the application in a
browser that does not support canvas.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Graphics Contexts and Graphics Objects

 We use the getElementById method to get the
canvas element using the ID.

 Next we get the context object. A context
represents a 2D rendering surface that
provides methods for drawing on a canvas.

 The context contains attributes and
methods for drawing, font manipulation,
color manipulation and other graphics-
related actions.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Drawing the Rectangle
 To draw the rectangle, we specify its color by setting

the fillStyle attribute to yellow.

 The fillRect method then draws the rectangle using the
arguments x, y, width and height, where x and y are the
coordinates for the top-left corner of the rectangle.

 The strokeStyle attribute specifies the stroke color or
style (in this case, royalblue).

 The lineWidth attribute specifies the stroke width in
coordinate space units.

 The strokeRect method specifies the coordinates of the
stroke using the arguments x, y, width and height.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 To draw lines and complex shapes in canvas, we
use paths.

 A path can have zero or more subpaths, each
having one or more points connected by lines or
curves.

 If a subpath has fewer than two points, no path is
drawn.

 Figure 14.3 uses paths to draw lines on a canvas.
 The beginPath method starts the line’s path.
 The moveTo method sets the x- and y-coordinates

of the path’s origin.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 From the point of origin, we use the lineTo method
to specify the destinations for the path.

 The lineWidth attribute is used to change the
thickness of the line.

 We then use the lineJoin attribute to specify the
style of the corners where two lines meet—in this
case, bevel.

 The lineJoin attribute has three possible values—
bevel, round, and miter. The value bevel gives
the path sloping corners.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The lineCap attribute specifies the style of the end of
the lines.

 There are three possible values—butt, round, and
square.

 A butt lineCap specifies that the line ends have
edges perpendicular to the direction of the line and
no additional cap.

 Next, the strokeStyle attribute specifies the line
color—in this case, red.

 The stroke method draws the line on the canvas. The
default stroke color is black.

 The round lineJoin creates rounded corners.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The round lineCap adds a semicircular cap
to the ends of the path—the cap’s diameter
is equal to the width of the line.

 The closePath method closes the path by
drawing a straight line from the last specified
destination back to the point of the path’s
origin.

 The miter lineJoin bevels the lines at an
angle where they meet.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The butt lineCap adds a rectangular cap to
the line ends.

 The length of the cap is equal to the line
width, and the width of the cap is equal to
half the line width.

 The edge of the square lineCap is
perpendicular to the direction of the line.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Arcs are portions of the circumference of a circle.
 To draw an arc, you specify the arc’s starting

angle and ending angle measured in radians—the
ratio of the arc’s length to its radius.

 The arc is said to sweep from its starting angle to
its ending angle.

 Figure 14.4 depicts two arcs.
 The arc at the left of the figure sweeps

counterclockwise from zero radians to p/2
radians, resulting in an arc that sweeps three
quarters of the circumference a circle.

 The arc at the right of the figure sweeps
clockwise from zero radians to p/2 radians.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 14.5 shows how to draw arcs and circles
using the arc method.

 The beginPath method starts the path.
 Next, the arc method draws the circle using five

arguments.
 The first two arguments represent the x- and y-

coordinates of the center of the circle—in this case,
35, 50.

 The third argument is the radius of the circle.
 The fourth and fifth arguments are the arc’s

starting and ending angles in radians. In this case,
the ending angle is Math.PI*2.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The constant Math.PI is the JavaScript
representation of the mathematical constant p, the
ratio of a circle’s circumference to its diameter.

 2p radians represents a 360-degree arc, p radians
is 180 degrees and p/2 radians is 90 degrees.

 To draw the circle to the canvas, we specify a
fillStyle of mediumslateblue, then draw the
circle using the fill method.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 We then draw a black arc that sweeps clockwise.
 Using the arc method, we draw an arc with a

center at 110, 50, a radius of 30, a starting angle
of 0 and an ending angle of Math.PI (180
degrees).

 The sixth argument is optional and specifies the
direction in which the arc’s path is drawn.

 By default, the sixth argument is false, indicating
that the arc is drawn clockwise.

 If the argument is true, the arc is drawn
counterclockwise (or anticlockwise).

 We draw the arc using the stroke method.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Next, we draw a filled red semicircle
counterclockwise so that it sweeps upward.

 To draw the arc counterclockwise, we use the sixth
argument, true.

 Finally, we draw a darkorange 270-degree
clockwise arc.

 Since we do not include the optional sixth
argument, it defaults to false, drawing the arc
clockwise.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 In the next example, we add shadows to two filled rectangles
(Fig. 14.6).

 We start by specifying the shadowBlur attribute, setting its
value to 10. By default, the blur is 0 (no blur).

 The higher the value, the more blurred the edges of the
shadow will appear.

 Next, we set the shadowOffsetX attribute to 15, which moves
the shadow to the right of the rectangle.

 We then set the shadowOffsetY attribute to 15, which moves
the shadow down from the rectangle.

 Finally, we specify the shadowColor attribute as blue.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 For the second rectangle, we create a shadow
that shifts above and to the left of the rectangle.

 Notice that the shadowBlur is 20. The effect is a
shadow on which the edges appear more blurred
than on the shadow of the first rectangle.

 Next, we specify the shadowOffsetX, setting its
value to -20. Using a negative shadowOffsetX
moves the shadow to the left of the rectangle.

 We then specify the shadowOffsetY attribute,
setting its value to -20. Using a negative
shadowOffsetY moves the shadow up from the
rectangle.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 14.7 demonstrates how to draw a rounded rectangle
using lines to draw the straight sides and quadratic curves to
draw the rounded corners.

 Quadratic curves have a starting point, an ending point and a
single point of inflection.

 The quadraticCurveTo method uses four arguments.
◦ The first two, cpx and cpy, are the coordinates of the control point—the point

of the curve’s inflection.
◦ The third and fourth arguments, x and y, are the coordinates of the ending

point.
◦ The starting point is the last subpath destination, specified using the moveTo or
lineTo methods.

 For example, if we write
 context.moveTo(5, 100);
context.quadraticCurveTo(25, 5, 95, 50);

 the curve starts at (5, 100), curves at (25, 5) and ends at (95,
50).

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Bezier curves have a starting point, an ending point and two
control points through which the curve passes.

 These can be used to draw curves with one or two points of
inflection, depending on the coordinates of the four points.

 For example, you might use a Bezier curve to draw complex
shapes with s-shaped curves.

 The bezierCurveTo method uses six arguments.
◦ The first two arguments, cp1x and cp1y, are the coordinates of the first control

point.
◦ The third and fourth arguments, cp2x and cp2y, are the coordinates for the

second control point.
◦ Finally, the fifth and sixth arguments, x and y, are the coordinates of the

ending point.

 The starting point is the last subpath destination, specified using
either the moveTo or lineTo method.

 Figure 14.8 demonstrates how to draw an s-shaped Bezier curve
using the bezierCurveTo method.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 14.9 fills three separate canvases with
linear gradients—vertical, horizontal and
diagonal.

 On the first canvas, we draw a vertical gradient.
We use the createLinearGradient method
◦ the first two arguments are the x- and y-coordinates of

the gradient’s start, and the last two are the x- and y-
coordinates of the end.
◦ The start and end have the same x-coordinates but

different y-coordinates, so the start of the gradient is a
point at the top of the canvas directly above the point at
the end of the gradient at the bottom.

 This creates a vertical linear gradient that starts
at the top and changes as the gradient moves to
the bottom of the canvas.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 We use the addColorStop method to add three
color stops.
◦ Each color stop has a positive value between 0 (the start

of the gradient) and 1 (the end of the gradient).
◦ For each color stop, we specify a color.

 The fillStyle method specifies a gradient
and then the fillRect method draws the
gradient on the canvas.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 On the second canvas, we draw a horizontal
gradient.

 We use the createLinearGradient method
where the first two arguments are (0, 0) for the
start of the gradient and (200, 0) for the end.

 In this case, the start and end have different x-
coordinates but the same y-coordinates,
horizontally aligning the start and end. This
creates a horizontal linear gradient.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 On the third canvas, we draw a diagonal
gradient.

 Using the createLinearGradient method, the
first two arguments are (0, 0)—the coordinates
of the starting position of the gradient in the top
left of the canvas.

 The last two arguments are (135, 200)—the
ending position of the gradient.

 This creates a diagonal linear gradient that starts
at the top left and changes at an angle as the
gradient moves to the right edge of the canvas.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Fig. 14.10 shows how to create radial gradients on a
canvas.

 A radial gradient is comprised of two circles—an inner
circle where the gradient starts and an outer circle
where it ends.

 We use the createRadialGradient method whose first
three arguments are the x- and y-coordinates and the
radius of the gradient’s start circle, respectively, and
whose last three arguments are the x- and y-
coordinates and the radius of the end circle.

 The first radial gradient has concentric circles—they
have the same x- and y-coordinates but each has a
different radius, creating a radial gradient that starts in
a common center and changes as it moves outward.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 On the second canvas, the start and end circles
have different x- and y-coordinates, altering the
effect.

 These are not concentric circles. The start circle of
the gradient is near the bottom left of the canvas
and the end circle is centered on the canvas.

 This creates a radial gradient that starts near the
bottom left of the canvas and changes as it moves
to the right.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 14.11 uses the drawImage method to draw an image
to a canvas.

 We create a new Image object and store it in the variable
image.

 Function draw is called to draw the image after the document
and all of its resources load.

 The drawImage method draws the image to the canvas using
five arguments.
◦ The first argument can be an image, canvas or video element.
◦ The second and third arguments are the destination x- and destination y-

coordinates—these indicate the position of the top-left corner of the
image on the canvas.

◦ The fourth and fifth arguments are the destination width and destination
height.

 If the values do not match the size of the image, it will be
stretched to fit.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Note that you can call drawImage in three ways. In its
simplest form, you can use

 context.drawImage(image, dx, dy)

 where dx and dy represent the position of the top-left corner
of the image on the destination canvas.

 The default width and height are the source image’s width
and height.

 Or, as we did in this example, you can use
 context.drawImage(image, dx, dy, dw, dh)

 where dw is the specified width of the image on the
destination canvas and dh is the specified height of the
image on the destination canvas.

 Finally, you can use
 context.drawImage(image, sx, sy, sw, sh, dx, dy, dw, dh)

 where sx and sy are the coordinates of the top-left corner of
the source image, sw is the source image’s width and sh its
height.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 14.12 shows how to obtain a canvas’s pixels and
manipulate their red, green, blue and alpha (RGBA) values.

 For security reasons, some browsers allow a script to get an
image’s pixels only if the document is requested from a web
server.

 For this reason, you can test this example at
 http://test.deitel.com/iw3htp5/ch14/fig14_12/imagemanipula
tion.html

 You can change the RGBA values with the input elements of
type range defined in the body.

 You can adjust the amount of red, green or blue from 0 to
500% of its original value—on a pixel-by-pixel basis, we
calculate the new amount of red, green or blue accordingly.

 For the alpha, you can adjust the value from 0 (completely
transparent) to 255 (completely opaque).

 The script begins when the window’s load event calls
function start.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Script-Level Variables and Loading the Original
Image
 Variables redRange, greenRange, blueRange

and alphaRange will refer to the four range
inputs so that we can easily access their values
in the script’s other functions.

 Variable image represents the original image to
draw.

 Next, create an Image object and use it to load
the image redflower.png, which is provided
with the example.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Function start
 Draw the original image twice—once in the upper-left corner

of the canvas and once 250 pixels to the right.
 Call function processGrayscale to create the grayscale

version of the image which will appear at x-coordinate 500.
 Get the range input elements and register their event

handlers.
 For the redRange, greenRange and blueRange elements, we

register for the change event and call processImage with the
values of these three range inputs.

 For the alphRange elements we register for the change event
and call processAlpha with the value of that range input.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Function processAlpha
 Function processAlpha applies the new alpha value to

every pixel in the image.
 Call canvas method getImageData to obtain an object that

contains the pixels we wish to manipulate.
 The method receives a bounding rectangle representing

the portion of the canvas to get—in this case, a 250-pixel
square from the upper-left corner.

 The returned object contains an array named data which
stores every pixel in the selected rectangular area as four
elements in the array.

 Each pixel’s data is stored in the order red value, green
value, blue value, alpha value.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 So, the first four elements in the array represent
the RGBA values of the pixel in row 0 and column
0, the next four elements represent the pixel in
row 0 and column 1, etc.

 We then iterate through the array processing
every fourth element, which represents the alpha
value in each pixel, and assigning it the new
alpha value.

 canvas method putImageData places the
updated pixels on the canvas with the upper-left
corner of the processed image at location 250, 0.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Function processImage
 Function processImage is similar to function processAlpha

except that its loop processes the first three of every four
elements—that is, the ones that represent a pixel’s RGB values.

Function processGrayscale
 Function processGrayscale is similar to function
processImage except that its loop performs a weighted-average
calculation to determine the new value assigned to the red,
green and blue components of a given pixel.

 We used the formula for converting from RGB to grayscale
provided at http://en.wikipedia.org/wiki/Grayscale.

Function resetImage
 Function resetImage resets the on-screen images and the
range input elements to their original values.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 14.13 demonstrates how to draw a pattern on a
canvas.

 Create and load the image we’ll use for our pattern.
 Function start is called in response to the window’s load

event.
 The createPattern method creates the pattern.
 The first argument is the image we’re using for the pattern,

which can be an image element, a canvas element or a video
element.

 The second argument specifies how the image will repeat to
create the pattern and can be one of four values—repeat
(repeats horizontally and vertically), repeat-x (repeats
horizontally), repeat-y (repeats vertically) or no-repeat.

 Specify the coordinates for the pattern on the canvas.
 Then specify the fillStyle attribute (pattern) and use the
fill method to draw the pattern to the canvas.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The next several examples show you how to
use canvas transformation methods
including translate, scale, rotate and
transform.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 14.14 demonstrates how to draw ellipses.
 We change the transformation matrix (the coordinates) on the
canvas using the translate method so that the center of the
canvas becomes the origin (0, 0).

 To do this, we use half the canvas width as the x-coordinate
and half the canvas height as the y-coordinate.

 This will enable us to center the ellipse on the canvas.
 We then use the scale method to stretch a circle to create an

ellipse.
◦ The x value represents the horizontal scale factor; the y value represents

the vertical scale factor—in this case, our scale factor indicates that the
ratio of the width to the height is 1:3, which will create a tall, thin ellipse.

 Next, we draw the circle that we want to stretch using the
beginPath method to start the path, then the arc method to
draw the circle.

 The x- and y-coordinates for the center of the circle are (0,
0), which is now the center of the canvas (not the top-left
corner).

Copyright © Pearson, Inc. 2013. All

Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Next, we create a horizontal purple ellipse
on a separate canvas.

 We use a scale of 3, 2, indicating that the
ratio of the width to the height is 3:2.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 14.15 uses the rotate method to create an
animation of a rotating rectangle on a canvas.

 First, we create the JavaScript function
startRotating.

 We change the transformation matrix on the
canvas using the translate method, making
the center of the canvas the origin with the x, y
values (0, 0). This allows us to rotate the
rectangle (which is centered on the canvas)
around its center.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 We use the setInterval method of the window
object. The first argument is the name of the function
to call (rotate) and the second is the number of
milliseconds between calls.

 Next, we create the JavaScript function rotate.
 We use the clearRect method to clear the rectangle’s

pixels from the canvas, converting them back to
transparent as the rectangle rotates. This method
takes four arguments—x, y, width and height.

 Next, the rotate method takes one argument—the
angle of the clockwise rotation, expressed in radians.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The transform method allows you to skew, scale, rotate and
translate elements without using the separate transformation
methods discussed earlier in this section.

 The transform method takes six arguments in the format (
a, b, c, d, e, f).

 The first argument, a, is the x-scale—the factor by which to
scale the element horizontally.

 The second argument, b, is the y-skew.
 The third argument, c, is the x-skew.
 The fourth argument, d, is the y-scale—the factor by which to

scale the element vertically.
 The fifth argument, e, is the x-translation and the sixth

argument, f, is the y-translation.
 The default x- and y-scale values are 1. The default values of

the x- and y-skew and the x- and y-translation are 0,
meaning there is no skew or translation.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 14.16 uses the transform method to
skew, scale and translate two rectangles.

 On the first canvas (lines 12–32), we declare
the variable rectangleWidth and assign it
the value 120, and declare the variable
rectangleHeight and assign it the value 60
(lines 18–19).

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 14.17 shows you how to draw text on
a canvas.

 We use the font attribute to specify the style,
size and font of the text.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Next, we use textBaseline attribute to specify
the alignment points of the text.

 There are six different textBaseline
attribute values (Fig. 14.18).

 To see how each value aligns the font, see the
graphic in the HTML5 canvas specification at
 http://www.whatwg.org/specs/web-
apps/current-work/multipage/the-canvas-
element.html#text-0



Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The fillText method draws the text to the canvas.
This method takes three arguments.
◦ The first is the text being drawn to the canvas.

◦ The second and third arguments are the x- and y-
coordinates.

◦ You may include the optional fourth argument, maxWidth,
to limit the width of the text.

 We center the second line of text on the canvas
using the textAlign attribute which specifies the
horizontal alignment of the text relative to the x-
coordinate of the text.

 Fig. 14.19 describes the textAlign attribute
values.

 Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The strokeStyle specifies the color of the
text.

 Finally, we use strokeText to specify the
text being drawn to the canvas and its x-
and y-coordinates.

 By using strokeText instead of fillText,
we draw outlined text instead of filled text.

 Keep in mind that once text is on a canvas
it’s just bits—it can no longer be manipulated
as text.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 14.20 demonstrates how to
dynamically resize a canvas to fill the
window.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Use a CSS style sheet to set the position of
the canvas to absolute and set both its
width and height to 100%, rather than using
fixed coordinates.

 This places the canvas at the top left of the
screen and allows the canvas width and
height to be resized to 100% of those of the
window.

 Do not include a border on the canvas.

 We use JavaScript function draw to draw the
canvas when the application is rendered.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 fillRect draws the color to the canvas.
Recall that in previous examples, the four
coordinates we used for method fillRect
were x, y, x1, y1, where x1 and y1
represent the coordinates of the bottom-right
corner of the rectangle.

 In this example, the x- and y-coordinates are
(0, 0)—the top left of the canvas.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The the x1 value is context.canvas.width
and the y1 value is context.value.height,
so no matter the size of the window, the x1
value will always be the width of the canvas
and the y1 value will always be the height of
the canvas.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 In Fig. 14.21, the globalAlpha attribute is used to
demonstrate three different alpha transparencies.

 The globalAlpha value can be any number
between 0 (fully transparent) and 1 (the default
value, which is fully opaque).
◦ The first canvas has a globalAlpha attribute value of 0.9

to create a circle that’s mostly opaque.

◦ The second canvas has a globalAlpha attribute value of
0.5 to create a circle that’s semitransparent.

◦ The third canvas has a globalAlpha attribute value of
0.15 to create a circle that’s almost entirely transparent.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Compositing allows you to control the layering of
shapes and images on a canvas using two
attributes—the globalAlpha attribute described in
the previous example, and the
globalCompositeOperation attribute.

 There are 11 globalCompositeOperation
attribute values (Fig. 14.22).

 The source is the image being drawn to a canvas.

 The destination is the current bitmap on a canvas.

 In Fig. 14.23, we demonstrate six of the
compositing effects.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The Cannon Game app challenges you to
destroy a seven-piece moving target before a
ten-second time limit expires (Fig. 14.24).
◦ The Cannon Game currently works in Chrome,

Internet Explorer 9 and Safari. It does not work
properly in Opera, Firefox, iPhone and Android.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The game consists of four visual
components—a cannon that you control, a
cannonball fired by the cannon, the seven-
piece target and a moving blocker that
defends the target to make the game more
challenging.

 You aim the cannon by clicking the screen—
the cannon then aims where you clicked and
fires a cannonball. You can fire a cannonball
only if there is not another one on the screen.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The game begins with a 10-second time limit. Each
time you hit a target section, you are rewarded with
three seconds being added to the time limit; each
time you hit the blocker, you are penalized with
two seconds being subtracted from the time limit.

 You win by destroying all seven target sections
before time runs out. If the timer reaches zero, you
lose.

 When the game ends, it displays an alert dialog
indicating whether you won or lost, and shows the
number of shots fired and the elapsed time
(Fig. 14.25).


Copyright © Pearson, Inc. 2013. All

Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 When the cannon fires, the game plays a firing
sound.

 The target consists of seven pieces. When a
cannonball hits a piece of the target, a glass-
breaking sound plays and that piece disappears
from the screen.

 When the cannonball hits the blocker, a hit sound
plays and the cannonball bounces back.

 The blocker cannot be destroyed.

 Figure 14.26 shows the HTML5 document for the
Cannon Game.



Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 14.27 lists the Cannon Game’s
numerous constants and instance variables.



Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 14.28 shows function setupGame.

s

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 14.29 presents functions startTimer
and stopTimer which manage the click
event handler and the interval timer.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Function resetElements (Fig. 14.30) is
called by function newGame to position and
scale the size of the game elements relative
to the size of the canvas.

 The calculations performed here scale the
game’s on-screen elements based on the
canvas’s pixel width and height—we arrived
at our scaling factors via trial and error until
the game surface looked good.



Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Function newGame (Fig. 14.31) is called when
the user clicks the Start Game button; the
function initializes the game’s instance
variables.



Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 This app performs its animations manually by
updating the positions of all the game
elements at fixed time intervals.

 The interval timer (Fig. 14.29) in function
startTimer calls function updatePositions
(Fig. 14.32) to update the game every 25
milliseconds (i.e., 40 times per second).

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 This function also performs simple collision
detection to determine whether the
cannonball has collided with any of the
canvas’s edges, with the blocker or with a
section of the target.

 Game-development frameworks generally
provide more sophisticated, built-in
collision-detection capabilities.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The function begins by updating the
positions of the blocker and the target.

 Lines 171–173 change the blocker’s position
by multiplying blockerVelocity by the
amount of time that has passed since the last
update and adding that value to the current
x- and y-coordinates.

 Lines 176–178 do the same for the target.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 If the blocker has collided with the top or
bottom wall, its direction is reversed by
multiplying its velocity by -1 (lines 181–182).

 Lines 185–186 perform the same check and
adjustment for the full length of the target,
including any sections that have already been
hit.

 Line 188 checks whether the cannonball is on
the screen. If it is, we update its position by
adding the distance it should have traveled
since the last timer event. This is calculated
by multiplying its velocity by the amount of
time that passed.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 We perform simple collision detection, based
on the rectangular boundary of the
cannonball. Four conditions must be met if
the cannonball is in contact with the blocker:
◦ The cannonball has reached the blocker’s distance

from the left edge of the screen.

◦ The cannonball has not yet passed the blocker.

◦ Part of the cannonball must be lower than the top
of the blocker.

◦ Part of the cannonball must be higher than the
bottom of the blocker.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 If all these conditions are met, we play
blocker hit sound, reverse the cannonball’s
direction on the screen and penalize the user
by subtracting MISS_PENALTY from
timeLeft.

 We remove the cannonball if it reaches any of
the screen’s edges.

 We then check whether the cannonball has hit
the target.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 If the cannonball hit the target, we
determine which section of the target was
hit by dividing the distance between the
cannonball and the bottom of the target by
the length of a piece.

 This expression evaluates to 0 for the
topmost section and 6 for the bottommost.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 When the user clicks the mouse on the
canvas, the click event handler calls function
fireCannonball (Fig. 14.33) to fire a
cannonball.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Function alignCannon (Fig. 14.34) aims the
cannon at the point where the user clicked
the mouse on the screen.

 We compute the vertical distance of the
mouse click from the center of the screen.

 If this is not zero, we calculate the cannon
barrel’s angle from the horizontal.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 If the click is on the lower half of the screen
we adjust the angle by Math.PI.

 We then use the cannonLength and the
angle to determine the x- and y-coordinates
for the end point of the cannon’s barrel—this
is used in function draw (Fig. 14.35) to draw
a line from the cannon base’s center at the
left edge of the screen to the cannon barrel’s
end point.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 When the screen needs to be redrawn, the
draw function (Fig. 14.35) renders the game’s
on-screen elements—the cannon, the
cannonball, the blocker and the seven-piece
target.



Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 When the game ends, the
showGameOverDialog function (Fig. 14.36)
displays an alert indicating whether the
player won or lost, the number of shots fired
and the total time elapsed.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 The canvas’s state includes its current style and
transformations, which are maintained in a stack.

 The save method is used to save the context’s
current state.

 The restore method restores the context to its
previous state.

 Figure 14.37 demonstrates using the save method
to change a rectangle’s fillStyle and the
restore method to restore the fillStyle to the
previous settings in the stack.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Most current browsers also support SVG
(Scalable Vector Graphics), which offers a
different approach to developing 2D
graphics.

 Vector graphics are made of scalable
geometric primitives such as line segments
and arcs.

 SVG is XML-based, so it uses a declarative
approach—you say what you want and SVG
builds it for you.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 With SVG, each separate part of your graphic
becomes an object that can be manipulated
through the DOM.

 The DOM manipulation in SVG can degrade
performance, particularly for more complex
graphics.

 SVG graphics easily and accurately scale to
larger or smaller drawing surfaces.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 SVG is more appropriate for accessibility
applications for people with disabilities. It’s
easier, for example, for people with low
vision or vision impairments to work with the
XML text in an SVG document than with the
pixels in a canvas.

 SVG has better animation capabilities, so
game developers often use a mix of both the
canvas and SVG approaches.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 SVG is more convenient for cross-platform
graphics, which is becoming especially
important with the proliferation of “form
factors,” such as desktops, notebooks,
smartphones, tablets and various special-
purpose devices such as car navigation
systems.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

 Figure 14.38 lists several websites with fun
and interesting 3D examples.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

