HTML5:
Introduction to
canvas

Rights Reserved.

Chapter 14
Introduction to canvas

Internet & World Wide Web
How to Program, 5/e

OBJECTIVES
In this chapter you'll:

m Draw lines, rectangles, arcs, circles, ellipses and text.

Draw gradients and shadows.

Draw images, create patterns and convert a color image to black and white.
m Draw Bezier and quadratic curves.

Rotate, scale and transform.

Dynamically resize a canvas to fill the window.

Use alpha transparency and compositing techniques.

m Create an HTMLS canvas-based game app with sound and collision detection that’s easy to
code and fun to play.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.1 Introduction

14.2 canvas Coordinate System
14.3 Rectangles

14.4 Using Paths to Draw Lines
14.5 Drawing Arcs and Circles
14.6 Shadows

14.7 Quadratic Curves

14.8 Bezier Curves

14.9 Linear Gradients

14.10 Radial Gradients
14.11Images

14.12 Image Manipulation: Processing the Individual Pixels of a canvas
14.13 Patterns

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.14 Transformations
14.14.1 scale and translate Methods: Drawing Ellipses
14.14.2 rotate Method: Creating an Animation

14.14.3 transform Method: Drawing Skewed Rectangles
14.15 Text

14.16 Resizing the canvas to Fill the Browser Window
14.17 Alpha Transparency
14.18 Compositing
14.19 Cannon Game
[4.19.1 HTML5 Document
14.19.1 Instance Variables and Constants
14.19.3 Function setupGame

14.19.4 Functions startTimer and stopTimer
14.19.5 Function resetElements

14.19.6 Function newGame

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.19.7 Function updatePositions: Manual Frame-by-Frame Animation and Simple
Collision Detection

14.19.8 Function fireCannonball

14.19.9 Function alignCannon
14.19.10 Function draw
14.19.11 Function showGameOverDialog

14.20 save and restore Methods
14.21 A Note on SVG
14.22 A Note on canvas 3D

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.1 Introduction

» The canvas element, which you’ll learn to use in
this chapter, provides a JavaScript application
programming interface (APl) with methods for
drawing two-dimensional bitmapped graphics
and animations, manipulating fonts and images,
and inserting images and videos.

- Due to the large number of examples in this chapter,
most of the examples use embedded JavaScripts.

» A key benefit of canvas is that it’s built into the
browser, eliminating the need for plug-ins like
Flash and Silverlight, thereby improving
performance and convenience and reducing

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.2 canvas Coordinate System

» To begin drawing, we first must understand canvas’s coordinate
system (Fig. 14.1), a scheme for identifying every point on a
canvas.

» Iéy def)ault, the upper-left corner of a canvas has the coordinates
0, 0).
» A coordinate pair has both an x-coordinate (the horizontal
coordinate) and a y-coordinate (the vertical coordinate).

» The x—coordinate is the horizontal distance to the right from the
left border of a canvas.

» The y-coordinate is the vertical distance downward from the top
border of a canvas.

» The x-axis defines every horizontal coordinate, and the y-axis
defines every vertical coordinate.

» You position text and shapes on a canvas by specifying their x
and y-coordinates.

» Coordinate space units are measured in pixels (“picture
elements”), which are the smallest units of resolution on a
screen.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Portability Tip 14.1
@ Different screens vary in resolution and thus in density
of pixels so graphics may vary in appearance on different

SCIeens.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

(0, 0) > B X-axis

o I ®(x,y

Y
y-axis

Fig. 14.1 | canvas coordinate system. Units are measured in
pixels.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.3 Rectangles

» Figure 14.2 demonstrates how to draw a
rectangle with a border on a canvas.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 14.2: drawrectangle.html -->

4 <!-- Drawing a rectangle on a canvas. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Drawing a Rectangle</title>

9 </head>

10 <body>

11 <canvas id = "drawRectangle” width = "300" height = "100"
12 style = "border: 1lpx solid black;">
13 Your browser does not support Canvas.
14 </canvas>

15 <script type>

16 var canvas = document.getElementById("drawRectangle™);
17 var context = canvas.getContext("2d")
18 context.fi11Style = "yellow";

19 context.fillRect (5, 10, 200, 75);
20 context.strokeStyle = "royalblue";
21 context.lineWidth = 6;
22 context.strokeRect(4, 9, 201, 76);
23 </script>
24 </body>
25 </html>

14.2 | Drawing a rectangle with a border on a canvas. (Part | of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

@ Drawing a Rectangle X

C O filey///C/books/2011/IW3HTP5/examples/chl4/ 57 X\

-
yellow rectangle —

royal blue stroke —

m

canvas border

1

Fig. 14.2 | Drawing a rectangle with a border on a canvas. (Part 2 of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.3 Rectangles (cont.)

Creating a Canvas
4
4
4

The canvas element has two attributes—width and height.
The default width is 300 and the default height 150.

We create a canvas starting with a canvasiD—in this case,
"drawRectangle".

Assigning a unique ID to a canvas allows you to access it like
any other element, and to use more than one canvas on a
page.

Next, we specify the canvas’s width (300) and height (100),
and a border of 1px solid black. You do not need to
include a visible border.

We include the fallback text Your browser does not support
canvas. This will appear if the user runs the application in a
browser that does not support canvas.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.3 Rectangles (cont.)

Graphics Contexts and Graphics Objects

» We use the getElementByld method to get the
canvas element using the ID.

» Next we get the context object. A context
represents a 2D rendering surface that
provides methods for drawing on a canvas.

» The context contains attributes and
methods for drawing, font manipulation,
color manipulation and other graphics-
related actions.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.3 Rectangles (cont.)

Drawing the Rectangle

» To draw the rectangle, we specify its color by setting
the fillStyle attribute to yellow.

» The fillRect method then draws the rectangle using the
arguments x, y, width and height, where x and y are the
coordinates for the top-left corner of the rectangle.

» The strokeStyle attribute specifies the stroke color or
style (in this case, royalblue).

» The lineWidth attribute specifies the stroke width in
coordinate space units.

» The strokeRect method specifies the coordinates of the
stroke using the arguments x, y, width and height.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.4 Using Paths to Draw Lines

>

4

To draw lines and complex shapes in canvas, we
use paths.

A path can have zero or more subpaths, each
having one or more points connected by lines or
curves.

If a subpath has fewer than two points, no path is
drawn.

Figure 14.3 uses paths to draw lines on a canvas.
The beginPath method starts the line’s path.

The moveTo method sets the x- and y~coordinates
of the path’s origin.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.4 Using Paths to Draw Lines

» From the point of origin, we use the lineTo method
to specify the destinations for the path.

» The lineWidth attribute is used to change the
thickness of the line.

» We then use the lineJoin attribute to specify the
style of the corners where two lines meet—in this
case, bevel.

» The TineJoin attribute has three possible values—
bevel, round, and miter. The value bevel gives
the path sloping corners.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 14.3: Tlines.html -->

4 <!-- Drawing lines on a canvas. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Drawing Lines</title>

9 </head>

10 <body>

11 <canvas id = "drawlLines” width = "400" height = "200"
12 style = "border: 1lpx solid black;">

13 </canvas>

14 <script>

15 var canvas = document.getElementById("drawlLines");
16 var context = canvas.getContext("2d")

17

18 // red 1lines without a closed path

19 context.beginPath(); // begin a new path
20 context.moveTo(10, 10); // path origin
21 context.lineTo(390, 10);
22 context.lineTo(390, 30);
23 context.lineTo(10, 30);
24 context.lineWidth = 10; // line width

Fig. 14.3 | Drawing lines on a canvas. (Part | of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

context.lineloin = "bevel” // Tine join style
context.lineCap = "butt"; // line cap style
context.strokeStyle = "red" // line color
context.stroke(); //draw path

// orange Tines without a closed path
context.beginPath(); //begin a new path
context.moveTo(40, 75); // path origin
context.lineTo(40, 55);
context.lineTo(360, 55);
context.lineTo(360, 75);
context.lineWidth = 20; // line width

context.lineloin = "round” // Tine join style
context.lineCap = "round"; // Tine cap style
context.strokeStyle = "orange" //line color

context.stroke(); // draw path

// green lines with a closed path
context.beginPath(); // begin a new path
context.moveTo(10, 100); // path origin
context.lineTo(390, 100);

context.lineTo (390, 130);

context.closePath() // close path
context.lineWidth = 10; // line width
context.lineloin = "miter" // Tine join style

Fig. 14.3 | Drawing lines on a canvas. (Part 2 of 4.)

Copyright © Pearson, Inc. 2013. All

Rights Reserved.

50
51
52
53
54
55
56
57
58
39
60
61
62
63
64
65

context

// blue

context.
.moveTo(40, 140); // path origin
.1ineTo (360, 190);

context.
context.
context.
context.

context
context

context
context

</script>
</body>

</html>

.strokeStyle = "green” // Tine color
context.

stroke(); // draw path

lines without a closed path
beginPath(); // begin a new path

TineTo (360, 140);

TineTo (40, 190);

lineWidth = 5; // Tline width
TineCap = "butt"™; // line cap style

.strokeStyle = "blue”™ // Tine color
.stroke(); // draw path

Fig. 14.3 | Drawing lines on a canvas. (Part 3 of 4.)

Copyright © Pearson, Inc. 2013. All

Rights Reserved.

@ Drawing Lines *

C @ file)///C:/books/2011/IW3HTP5/examples/ch14/ vg¢ A _ .
red line with

T — || S Vet

orange line with

) round Tineloin
round Tinecap

green line with

square blue line with
linecap >< miter lineJoin

Fig. 14.3 | Drawing lines on a canvas. (Part 4 of 4.)

1

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.4 Using Paths to Draw Lines (cont.)

>

The lineCap attribute specifies the style of the end of
the lines.

There are three possible values—butt, round, and
square.

A butt TineCap specifies that the line ends have
edges perpendicular to the direction of the line and
no additional cap.

Next, the strokeStyle attribute specifies the line
color—in this case, red.

The stroke method draws the line on the canvas. The
default stroke color is black.

The round T1neJoin creates rounded corners.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.4 Using Paths to Draw Lines (cont.)

» The round 11neCap adds a semicircular cap
to the ends of the path—the cap’s diameter
is equal to the width of the line.

» The closePath method closes the path by
drawing a straight line from the last specified
destination back to the point of the path’s
origin.

» The miter 11neJoin bevels the lines at an
angle where they meet.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.4 Using Paths to Draw Lines (cont.)

» The butt 11neCap adds a rectangular cap to
the line ends.

» The length of the cap is equal to the line
width, and the width of the cap is equal to
half the line width.

» The edge of the square 1inecCap is
perpendicular to the direction of the line.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.5 Drawing Arcs and Circles

» Arcs are portions of the circumference of a circle.

» To draw an arc, you specify the arc’s starting
angle and ending angle measured in radians—the
ratio of the arc’s length to its radius.

» The arc is said to sweep from its starting angle to
its ending angle.

» Figure 14.4 depicts two arcs.

» The arc at the left of the figure sweeps
counterclockwise from zero radians to n/2
radians, resulting in an arc that sweeps three
quarters of the circumference a circle.

» The arc at the right of the figure sweeps
clockwise from zero radians to n/2 radians.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Counterclockwise argument is true Counterclockwise argument is false or omitted
3n/2 radians 3n/2 radians

T A
n radians Y 0 radians w radians T ! 0 radians
_| L
| — = = _ |

7/2 radians 7/2 radians

Fig. 14.4 | Positive and negative arc angles.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.5 Drawing Arcs and Circles (cont.)

» Figure 14.5 shows how to draw arcs and circles
using the arc method.

» The beginPath method starts the path.
» Next, the arc method draws the circle using five
arguments.

» The first two arguments represent the x- and y~
goordé)nates of the center of the circle—in this case,
5, 50.
» The third argument is the radius of the circle.
» The fourth and fifth arguments are the arc’s
starting and ending angles in radians. In this case,
the ending angle is Math.PI*2.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.5 Drawing Arcs and Circles (cont.)

» The constant Math.PI is the JavaScript

representation of the mathematical constant «, the
ratio of a circle’s circumference to its diameter.

» 27 radians represents a 360-degree arc, n radians
is 180 degrees and =n/2 radians is 90 degrees.
» To draw the circle to the canvas, we specify a

fi11style of mediumslateblue, then draw the
circle using the 111 method.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 14.5: drawingarcs.htm]l -->

4 <!-- Drawing arcs and a circle on a canvas. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Arcs and Circles</title>

9 </head>

10 <body>

11 <canvas id = "drawArcs” width = "225" height = "100">
12 </canvas>

13 <script>

14 var canvas = document.getElementById("drawArcs");
15 var context = canvas.getContext("2d")

16

17 // draw a circle

18 context.beginPath();

19 context.arc(35, 50, 30, 0, Math.PI * 2);
20 context.fil1Style = "mediumslateblue”;
21 context.fi11();
22

Fig. 14.5 | Drawing arcs and circles on a canvas. (Part | of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

23 // draw an arc counterclockwise

24 context.beginPath();

25 context.arc(110, 50, 30, 0, Math.PI, false);
26 context.stroke();

27

28 // draw a half-circle clockwise

29 context.beginPath();

30 context.arc(185, 50, 30, 0, Math.PI, true);
31 context.fil1Style = "red";

32 context.fi11();

33

34 // draw an arc counterclockwise

35 context.beginPath();

36 context.arc(260, 50, 30, 0, 3 * Math.PI / 2);
37 context.strokeStyle = "darkorange";

38 context.stroke();

39 </script>

40 </body>

41 </html>

Fig. 14.5 | Drawing arcs and circles on a canvas. (Part 2 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

@ Arcs and Circles

C O file///C:/books/2011/IW3HTP5/examples/ch14/ 53 N\

medium slate blue
circle N J

black arc drawn red semicircle drawn dark orange arc
clockwise counterclockwise drawn clockwise

| »

[

4

Fig. 14.5 | Drawing arcs and circles on a canvas. (Part 3 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.5 Drawing Arcs and Circles (cont.)

» We then draw a black arc that sweeps c/ockwise.

» Using the arc method, we draw an arc with a
center at 110, 50, a radius of 30, a starting angle
of 0 and an ending angle of Math.PI (180
degrees).

» The sixth argument is optional and specifies the
direction in which the arc’s path is drawn.

» By default, the sixth argument is false, indicating
that the arc is drawn clockwise.

» If the argument is true, the arc is drawn
counterclockwise (or anticlockwise).

» We draw the arc using the stroke method.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.5 Drawing Arcs and Circles (cont.)

» Next, we draw a filled red semicircle
counterclockwise so that it sweeps upward.

» To draw the arc counterclockwise, we use the sixth
argument, true.

» Finally, we draw a darkorange 270-degree
clockwise arc.

» Since we do not include the optional sixth
argument, it defaults to false, drawing the arc
clockwise.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.6 Shadows

» In the next example, we add shadows to two filled rectangles
(Fig. 14.6).

» We start by specifying the shadowBlur attribute, setting its
value to 10. By default, the blur is 0 (no blur).

» The higherthe value, the more blurred the edges of the
shadow will appear.

» Next, we set the shadowOffsetX attribute to 15, which moves
the shadow to the right of the rectangle.

» We then set the shadowOffsetY attribute to 15, which moves
the shadow down from the rectangle.

» Finally, we specify the shadowColor attribute as blue.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 14.6: shadows.html -->

4 <!-- Creating shadows on a canvas. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Shadows</title>

9 </head>

10 <body>

11 <canvas id = "shadow"” width = "525" height = "250"
12 style = "border: 1lpx solid black;">

13 </canvas>

14 <script>

15

16 // shadow effect with positive offsets
17 var canvas = document.getElementById("shadow™);
18 var context = canvas.getContext("2d")
19 context.shadowBlur = 10;
20 context.shadowOffsetX = 15;
21 context.shadowOffsetY = 15;
22 context.shadowColor = "blue™;
23 context.fi11Style = "cyan";
24 context.fillRect(25, 25, 200, 200);

Fig. 14.6 | Creating shadows on a canvas. (Part | of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

25
26
27
28
29
30
31
32
33
34
35

// shadow effect with negative offsets

context.
context.
context.
.shadowColor = "gray";
.fi11Style = "magenta';
context.

context
context

</script>
</body>

</html>

shadowBlur = 20;
shadowOffsetX
shadowOffsetY

-20;
-20;

fil11Rect (300, 25, 200, 200);

Fig. 14.6 | Creating shadows on a canvas. (Part 2 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

cyan
rectangle
with sharp
blue shadow
down and to
the right

(& @ﬁle:l!/C:/books/J.’Oll/IWEHTPS/examples/ch14ffigl4_0?/ﬂ\’ 2,

S

magenta
rectangle
with a more

blurry gray
shadow up
and to the
left

Fig. 14.6 | Creating shadows on a canvas. (Part 3 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.6 Shadows (cont.)

» For the second rectangle, we create a shadow
that shifts above and to the /eft of the rectangle.

» Notice that the shadowBlur is 20. The effect is a
shadow on which the edges appear more blurred
than on the shadow of the first rectangle.

» Next, we specify the shadowOffsetX, setting its
value to -20. Using a negative shadowOffsetX
moves the shadow to the /eft of the rectangle.

» We then specify the shadowOffsetY attribute,
setting its value to -20. Using a negative
shadowOffsetY moves the shadow up from the

tangle.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.7 Quadratic Curves

» Figure 14.7 demonstrates how to draw a rounded rectangle
using lines to draw the straight sides and quadratic curves to
draw the rounded corners.

» Quadratic curves have a starting point, an ending point and a
single point of inflection.

» The quadraticCurveTo method uses four arguments.
- The first two, cpx and cpy, are the coordinates of the contro/ point—the point
of the curve’s inflection.
> The third and fourth arguments, x and y, are the coordinates of the ending
point,
o The starting point is the last subpath destination, specified using the moveTo or
TineTo methods.
» For example, if we write

context.moveTo(5, 100);
context.quadraticCurveTo(25, 5, 95, 50);

3 tSP(])e) curve starts at (5, 100), curves at (25, 5) and ends at (95,

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

VOO~ UND WN =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

<!DOCTYPE html>

<!-- Fig. 14.7: roundedrectangle.html -->
<!-- Drawing a rounded rectangle on a canvas. -->
<html>
<head>
<meta charset = "utf-8">
<title>Quadratic Curves</title>
</head>
<body>

<canvas id = "drawRoundedRect” width = "130" height = "130"
style = "border: 1lpx solid black;">

</canvas>

<script>
var canvas = document.getElementById("drawRoundedRect™);
var context = canvas.getContext("2d")
context.beginPath();
context.moveTo(1l5, 5);
context.lineTo(95, 5);
context.quadraticCurveTo(105, 5, 105, 15);
context.lineTo(105, 95);
context.quadraticCurveTo(105, 105, 95, 105);
context.lineTo(15, 105);
context.quadraticCurveTo(5, 105, 5, 95);

Fig. 14.7 | Drawing a rounded rectangle on a canvas. (Part | of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

25
26
27
28
29
30
31
32
33
34
35

context.
.quadraticCurveTo(5, 5, 15, 5);
context.
.fiT1Style = "yellow";

context

context

context.
context
context
context.
</script>
</body>
</html>

Each corneris a

TineTo(5, 15);
closePath();

fi11Q; //fi11 with the fil1Style color

.strokeStyle = "royalblue";
.TineWidth = 6;

stroke(); //draw 6-pixel royalblue border

@ Quadratic Curves
C @ file///C:/books/2011/IW3HTP5/examples/ch14/ 55 X\

quadratic curve with
a radius of 10

m

1

Fig. 14.7 | Drawing a rounded rectangle on a canvas. (Part 2 of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.8 Bezier Curves

» Bezier curves have a starting point, an ending point and two
control points through which the curve passes.

» These can be used to draw curves with one or two points of
inflection, depending on the coordinates of the four points.

» For example, you might use a Bezier curve to draw complex
shapes with s-shaped curves.

» The bezierCurveTo method uses six arguments.

> The first two arguments, cp/x and cply, are the coordinates of the first control
point.

- The third and fourth arguments, cp2x and cp2y, are the coordinates for the
second control point.

- Finally, the fifth and sixth arguments, x and y, are the coordinates of the
ending point.

» The starting point is the last subpath destination, specified using
either the moveTo or 11neTo method.

» Figure 14.8 demonstrates how to draw an s-shaped Bezier curve
using the bezierCurveTo method.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 14.8: beziercurves.html -->

4 <!-- Drawing a Bezier curve on a canvas. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Bezier Curves</title>

9 </head>

10 <body>

11 <canvas id = "drawBezier” width = "150" height = "150"
12 style = "border: 1lpx solid black;">

13 </canvas>

14 <script>

15 var canvas = document.getElementById("drawBezier');
16 var context = canvas.getContext("2d")

17 context.beginPath();

18 context.moveTo(115, 20);

19 context.bezierCurveTo(12, 37, 176, 77, 32, 133);
20 context.lineWidth = 10;
21 context.strokeStyle = "red";
22 context.stroke();
23 </script>
24 </body>
25 </html>

Fig. 14.8 | Drawing a Bezier curve on a canvas. (Part | of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

m

C © filey///C/books/2011/IW3HTP5/examples/ch14/ 52 N\

-~

m

‘

Fig. 14.8 | Drawing a Bezier curve on a canvas. (Part 2 of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.9 Linear Gradients

» Figure 14.9 fills three separate canvases with

linear gradients—vertical, horizontal and
diagonal.

» On the first canvas, we draw a vert/ca/gradient.
We use the createLinearGradient metho

> the first two arguments are the x- and y-coordinates of

the gradient’s start, and the last two are the x- and y~
coordinates of the end.

> The start and end have the same x-coordinates but
different y-coordinates, so the start of the gradient is a
point at the top of the canvas directly above the point at
the end of the gradient at the bottom.

» This creates a vertical linear gradient that starts

at the top and changes as the gradient moves to
the bottom of the canvas.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 14.9: lineargradient.html -->

4 <!-- Drawing Tlinear gradients on a canvas. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Linear Gradients</title>

9 </head>

10 <body>

11

12 <!-- vertical Tinear gradient -->

13 <canvas id = "linearGradient” width = 200" height = "200"
14 style = "border: 1lpx solid black;">

15 </canvas>

16 <script>

17 var canvas = document.getElementById("linearGradient™);
18 var context = canvas.getContext("2d");

19 var gradient = context.createlLinearGradient(0, 0, 0, 200);
20 gradient.addColorStop(0, "white");
21 gradient.addColorStop(0.5, "lightsteelblue");
22 gradient.addColorStop(l, "navy™);
23 context.fi11Style = gradient;
24 context.fillRect(0, 0, 200, 200);
25 </script>

Fig. 14.9 | Drawing linear gradients on a canvas. (Part | of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

26

27 <!-- horizontal linear gradient -->

28 <canvas id = "linearGradient2"” width = "200" height = "200"
29 style = "border: 2px solid orange;">

30 </canvas>

31 <script>

32 var canvas = document.getElementById("1inearGradient2™);
33 var context = canvas.getContext("2d");

34 var gradient = context.createlLinearGradient(0, 0, 200, 0);
35 gradient.addColorStop(0, "white');

36 gradient.addColorStop(0.5, "yellow");

37 gradient.addColorStop(l, "orange™);

38 context.fi11Style = gradient;

39 context.fillRect(0, 0, 200, 200);

40 </script>

41

42 <l-- diagonal linear gradient -->

43 <canvas id = "linearGradient3"” width = "200" height = "200"
44 style = "border: 2px solid purple;">

45 </canvas>

46 <script>

47 var canvas = document.getElementById("TinearGradient3™);
48 var context = canvas.getContext("2d");

49 var gradient = context.createlinearGradient(0, 0, 45, 200);
50 gradient.addColorStop(0, "white");

Fig. 14.9 | Drawing linear gradients on a canvas. (Part 2 of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

51 gradient.addColorStop(0.5, "plum™);

52 gradient.addColorStop(l, "purple™);
53 context.fil1Style = gradient;

54 context.filTlRect(0, 0, 200, 200);
55 </script>

56 </body>

57 </html>

Fig. 14.9 | Drawing linear gradients on a canvas. (Part 3 of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

@ Linear Gradients .

C @ file:///C:/books/2011/IW3HTP5/examples/ch14/figl4_10/lineargradienthtm! 5y &

-~

m

Gradient changes vertically Gradient changes Gradient changes diagonally
from white to light steel blue horizontally from white to from white to plum to purple
to navy yellow to orange

Fig. 14.9 | Drawing linear gradients on a canvas. (Part 4 of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.9 Linear Gradients (cont.)

» We use the addColorStop method to add three

color stops.
- Each color stop has a positive value between 0O (the start
of the gradient) and 1 (the end of the gradient).

> For each color stop, we specify a color.

» The f111Style method specifies a gradient
and then the f111Rect method draws the

gradient on the canvas.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.9 Linear Gradients (cont.)

» On the second canvas, we draw a horizontal
gradient.

» We use the createLinearGradient method

where the first two arguments are (0, 0) for the
start of the gradient and (200, 0) for the end.

» In this case, the start and end have different x-
coordinates but the same y-coordinates,
horizontally aligninlg the start and end. This
creates a horizontal |

inear gradient.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.9 Linear Gra

dients (cont.)

» On the third canvas, we draw a diagonal

gradient.

» Using the createlLi
first two arguments
of the starting posit
left of the canvas.

nearGradient method, the
are (0, 0)—the coordinates
ion of the gradient in the top

» The last two arguments are (135, 200)—the

ending position of t

» This creates a diago
at the top left and c

ne gradient.

nal linear gradient that starts
nanges at an angle as the

gradient moves to t

ne right edge of the canvas.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.10 Radial Gradients

4

>

Fig. 14.10 shows how to create radia/ gradients on a
canvas.

A radial gradient is comprised of two circles—an /nner
circle where the gradient starts and an outer circle
where it ends.

We use the createRadialGradient method whose first
three arguments are the x- and y~coordinates and the
radius of the gradient’s start circle, respectively, and
whose last three arguments are the x- and)~
coordinates and the radius of the end circle.

The first radial gradient has concentric circles—they
have the same x- and y~coordinates but each has a
different radius, creating a radial gradient that starts in
a common center and changes as it moves outward.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.10 Radial Gradients

» On the second canvas, the start and end circles
h%ve different x- and y-coordinates, altering the
effect.

» These are not concentric circles. The start circle of
the gradient is near the bottom left of the canvas
and the end circle is centered on the canvas.

» This creates a radial gradient that starts near the
bottom left of the canvas and changes as it moves
to the right.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 14.10: radialgradient.htm]l -->

4 <!-- Drawing radial gradients on a canvas. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Radial Gradients</title>

9 </head>

10 <body>

11 <l-- radial gradient with concentric circles -->
12 <canvas id = "radialGradient” width = "200" height = "200"
13 style = "border: 1lpx solid black;">

14 </canvas>

15 <script>

16 var canvas = document.getElementById("'radialGradient");
17 var context = canvas.getContext("2d")

18 var gradient = context.createRadialGradient(
19 100, 100, 10, 100, 100, 125);
20 gradient.addColorStop(0, "white");
21 gradient.addColorStop(0.5, "yellow™);
22 gradient.addColorStop(0.75, "orange');
23 gradient.addColorStop(1l, “red");

Fig. 14.10 | Drawing radial gradients on a canvas. (Part | of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

context.fil11Style = gradient;
context.fil1Rect(0, 0, 200, 200);
</script>

<!-- radial gradient with nonconcentric circles -->

<canvas id = "radialGradient2"” width = "200" height = "200"
style = "border: 1lpx solid black;">

</canvas>

<script>
var canvas = document.getElementById("'radialGradient2™);
var context = canvas.getContext("2d")
var gradient = context.createRadialGradient(

20, 150, 10, 100, 100, 125);

gradient.addColorStop(0, "red");
gradient.addColorStop(0.5, "orange™);
gradient.addColorStop(0.75, "yellow");
gradient.addColorStop(1l, "white");
context.fi11Style = gradient;
context.filTl1Rect(0, 0, 200, 200);

</script>

</body>
</html>

Fig. 14.10 | Drawing radial gradients on a canvas. (Part 2 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Radial gradient that
changes in
concentric circles |

from white to
yellow, to orange to
red

@ Radial Gradients X

C @ file:///C:/books/2011/IW3HTP5/examples/ch14/ 55 A

-

Radial gradient
that changes in
non-concentric
circles from red
to orange, to

yellow to white

m

1

Fig. 14.10 | Drawing radial gradients on a canvas. (Part 3 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.11 Images

» Figure 14.11 uses the drawlmage method to draw an image
to a canvas.

» We create a new Image object and store it in the variable
image.

» Function draw is called to draw the image after the document
and all of its resources load.

» The drawImage method draws the image to the canvas using
five arguments.

> The first argument can be an image, canvas or video element.

- The second and third arguments are the destination x- and destination)~
coordinates—these indicate the position of the top-left corner of the
image on the canvas.

o 'I/;ht_a zourth and fifth arguments are the destination width and destination
eight.
» If the values do not match the size of the image, it will be
stretched to fit.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

VOO~ UND WN =

22

<!DOCTYPE html>

<!-- Fig. 14.11: image.html -->

<!-- Drawing an image to a canvas. -->
<html>
<head>
<meta charset = "utf-8">
<title>Images</title>
<script>
var image = new Image();

image.src = "yellowflowers.png";

function draw()

{
var canvas = document.getElementById("myimage");
var context = canvas.getContext("2d")
context.drawImage(image, 0, 0, 175, 175);

} // end function draw

window.addEventListener("load", draw, false);
</script>
</head>

Fig. 14.11 | Drawing an image to a canvas. (Part | of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

23 <body>

24 <canvas 1id = "myimage” width = "200" height = "200"
25 style = "border: 1px solid Black;">

26 </canvas>

27 </body>

28 </html>

m

C @ file///C:/books/2011/IW3HTP5/examples/ch14/ 5% N\

m

4

Fig. 14.11 | Drawing an image to a canvas. (Part 2 of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.11 Images (cont.)

» Note that you can call drawImage in three ways. In its

simplest form, you can use
- context.drawImage(image, dx, dy)

» where dx and dy represent the position of the top-left corner
of the image on the destination canvas.

» The default width and height are the source image’s width
and height.

» Or, as we did in this example, you can use

- context.drawImage(image, dx, dy, dw, dh)

» where dw is the specified width of the image on the
destination canvas and d# is the specified height of the
image on the destination canvas.

» Finally, you can use

- context.drawImage(image, sx, sy, sw, sh, dx, dy, dw, dh)

» where sx and sy are the coordinates of the top-left corner of
Lhe_z shource image, swis the source image’s width and s#A its

eight.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.12 Image Manipulation: Processing
the Individual Pixels of a canvas

» Figure 14.12 shows how to obtain a canvas’sgixels and
manipulate their red, green, blue and alpha (RGBA) values.

» For security reasons, some browsers allow a script to get an
image’s pixels only if the document is requested from a web
server.

» For this reason, you can test this example at

- http://test.deitel.com/iw3htp5/chl4/figl4_12/imagemanipula
tion.html

» You can change the RGBA values with the input elements of
type range defined in the body.

» You can adjust the amount of red, green or blue from 0 to
500% of its original value—on a pixel-by-pixel basis, we
calculate the new amount of red, green or blue accordingly.

» For the alpha, you can adjust the value from 0 (completely
transparent) to 255 (completely opaque).

» The script begins when the window’s l1oad event calls
function start.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 14.12: imagemanipulation.html -->

4 <!-- Manipulating an image’s pixels to change colors and transparency. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Manipulating an Image</title>

9 <style>

10 label { display: inline-block; width: 3em; }

11 canvas { border: lpx solid black; }

12 input[type="range”] { width: 600px; }

13 </style>

14 <script>

15 var context; // context for drawing on canvas

16 var redRange; // % of original red pixel value

17 var greenRange; // % of original green pixel value

18 var blueRange; // % of original blue pixel value

19 var alphaRange; // alpha amount value
20
21 var image = new Image(); // image object to store loaded image
22 image.src = "redflowers.png"; // set the image source
23

Fig. 14.12 | Manipulating an image’s pixels to change colors and
transparency. (Part | of 8.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

24 function start()

25 {

26 var canvas = document.getElementById("thecanvas");

27 context = canvas.getContext("2d")

28 context.drawImage(image, 0, 0); // original image

29 context.drawImage(image, 250, 0); // image for user change
30 processGrayscale(); // display grayscale of original image
31

32 // configure GUI events

33 redRange = document.getElementById("redRange"”);

34 redRange.addEventListener("change",

35 function() { processImage(this.value, greenRange.value,
36 blueRange.value); }, false);

37 greenRange = document.getElementById("greenRange");

38 greenRange.addEventListener("change",

39 function() { processImage(redRange.value, this.value,
40 bTueRange.value); }, false)

41 bTueRange = document.getElementById("blueRange”);

42 bTueRange.addEventListener("change",

43 function() { processImage(redRange.value,

44 greenRange.value, this.value); }, false)

Fig. 14.12 | Manipulating an image’s pixels to change colors and
transparency. (Part 2 of 8.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

alphaRange = document.getElementById("alphaRange");
alphaRange.addEventListener("change”,
function() { processAlpha(this.value); }, false)
document.getElementById("resetButton").addEventListener(
"click™, resetImage, false);

} // end function start

// sets the alpha value for every pixel
function processAlpha(newValue)

{

// get the ImageData object representing canvas's content
var imageData = context.getImageData(0, 0, 250, 250);
var pixels = imageData.data; // pixel info from ImageData

// convert every pixel to grayscale
for (var i = 3; i < pixels.length; i += 4)
{
pixels[i] = newValue;
} // end for

context.putImageData(imageData, 250, 0); // show grayscale

} // end function processImage

Fig. 14.12 | Manipulating an image’s pixels to change colors and
transparency. (Part 3 of 8.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

68 // sets the RGB values for every pixel

69 function processImage(redPercent, greenPercent, bluePercent)
70 {

71 // get the ImageData object representing canvas's content
72 context.drawImage(image, 250, 0);

73 var imageData = context.getImageData(0, 0, 250, 250);

74 var pixels = imageData.data; // pixel info from ImageData
75

76 //set percentages of red, green and blue in each pixel

77 for (var i = 0; i < pixels.length; i += 4)

78 {

79 pixels[i] *= redPercent / 100;

80 pixels[i + 1] *= greenPercent / 100;

81 pixels[i + 2] *= bluePercent / 100;

82 } // end for

83

84 context.putImageData(imageData, 250, 0); // show grayscale
85 } // end function processImage

86

Fig. 14.12 | Manipulating an image’s pixels to change colors and
transparency. (Part 4 of 8.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

// creates grayscale version of original image
function processGrayscale()

{

// get the ImageData object representing canvas's content
context.drawImage(image, 500, 0);

var imageData = context.getImageData(0, 0, 250, 250);

var pixels = imageData.data; // pixel info from ImageData

// convert every pixel to grayscale
for (var i = 0; i < pixels.length; i += 4)

{
var average =
(pixels[i] * 0.30 + pixels[i + 1] * 0.59 +
pixels[i + 2] * 0.11).toFixed(0);
pixels[i] = average;
pixels[i + 1] = average;
pixels[i + 2] = average;
} // end for

context.putImageData(imageData, 500, 0); // show grayscale

} // end function processGrayscale

Fig. 14.12 | Manipulating an image’s pixels to change colors and
transparency. (Part 5 of 8.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

110 // resets the user manipulated image and the sliders

1l function resetImage()

112 {

113 context.drawImage(image, 250, 0);

114 redRange.value = 100;

115 greenRange.value = 100;

116 blueRange.value = 100;

117 alphaRange.value = 255;

118 } // end function resetImage

119

120 window.addEventListener("load"”, start, false);
121 </script>

122 </head>

123 <body>

124 <canvas id = "thecanvas" width = "750" height = "250" ></canvas>
125 <p><label>Red:</1abel> 0 <input id = "redRange"”

126 type = “"range” max = "500" value = "100"> 500%</p>
127 <p><label>Green:</1abel> 0 <input id = "greenRange"”
128 type = "range” max = "500" value = "100"> 500%</p>
129 <p><label>Blue:</1abel> 0 <input id = "blueRange”

130 type = "range” max = "500" value = "100"> 500%</p>
131 <p><label>Alpha:</1abel> 0 <input id = "alphaRange"
132 type = "range” max = 255" value = "255"> 255</p>

Fig. 14.12 | Manipulating an image’s pixels to change colors and
transparency. (Part 6 of 8.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

133 <p><input id = "resetButton" type = "button”
134 value = "Reset Image'>

135 </body>

136 </html>

Fig. 14.12 | Manipulating an image’s pixels to change colors and
transparency. (Part 7 of 8.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

@ Manipulating an Image

C | ® testdeitel.com/iw3htp5/canvas/ch14/imageManipulation/imagemanipulation.htm WA

Red 0 8 500%
Green: 0 5 500%
Bhe: 0 U 500%
Alpha 0 U 255

Fig. 14.12 | Manipulating an image’s pixels to change colors and
ransparency. (Part 8 of 8.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.12 Image Manipulation: Processing
the Individual Pixels of a canvas (cont.)

Script-Level Variables and Loading the Original

Image

» Variables redRange, greenRange, blueRange
and alphaRange will refer to the four range
1nputs so that we can easily access their values
in the script’s other functions.

» Variable 1mage represents the original image to
draw.

» Next, create an Image object and use it to load
the image redflower.png, which is provided
with the example.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.12 Image Manipulation: Processing
the Individual Pixels of a canvas (cont.)

Function start

» Draw the original image twice—once in the upper-left corner
of the canvas and once 250 pixels to the right.

» Call function p_r'ocessGr_aKsc_a1e to create the grayscale
version of the image which will appear at x-coordinate 500.

» Get the range input elements and register their event
handlers.

» For the redRange, greenRange and blueRange elements, we
re?ister for the change event and call processImage with the
values of these three range inputs.

» For the alphRange elements we re?ister for the change event
and call processAlpha with the value of that range input.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.12 Image Manipulation: Processing
the Individual Pixels of a canvas (cont.)

Function processAlpha

» Function processAlpha applies the new alpha value to
every pixel in the image.

» Call canvas method getlmageData to obtain an object that
contains the pixels we wish to manipulate.

» The method receives a bounding rectangle representing

the portion of the canvas to get—in this case, a 250-pixel
square from the upper-left corner.

» The returned object contains an array named data which
stores every pixel in the selected rectangular area as four
elements in the array.

» Each pixel’s data is stored in the order red value, green
value, blue value, alpha value.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.12 Image Manipulation: Processing
the Individual Pixels of a canvas (cont.)

» So, the first four elements in the array represent
the RGBA values of the pixel in row 0 and column
0, the next four elements represent the pixel in
row 0 and column 1, etc.

» We then iterate through the array processing
every fourth element, which represents the alpha
value in each pixel, and assigning it the new
alpha value.

» canvas method putimageData places the
updatedfpixels on the canvas with the upper-left
corner of the processed image at location 250, O.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.12 Image Manipulation: Processing
the Individual Pixels of a canvas (cont.)

Function processImage

» Function processImage is similar to function FrocessMpha
except that its loop processes the first three of every four
elements—that is, the ones that represent a pixel’s RGB values.

Function processGrayscale

» Function processGrayscale is similar to function
processImage except that its loop performs a weighted-average
calculation to determine the new value assigned to the red,
green and blue components of a given pixel.

» We used the formula for converting from RGB to grayscale
provided at http://en.wikipedia.org/wiki/Grayscale.

Function resetImage

» Function resetImage resets the on-screen images and the
range input elements to their original values.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.13 Patterns

» Figure 14.13 demonstrates how to draw a pattern on a
canvas.

» Create and load the image we’ll use for our pattern.

» Function start is called in response to the window’s Toad
event.

» The createPattern method creates the pattern.

» The first argument is the image we’re using for the pattern,
wlhich can be an 1mage element, a canvas element or a video
element.

» The second argument specifies how the image will repeat to
create the pattern and can be one of four values—repeat
(repeats horizontally and vertically), repeat-x (repeats
horizontally), repeat-y (repeats vertically) or no-repeat.

» Specify the coordinates for the pattern on the canvas.

» Then specify the fi11Style attribute (pattern) and use the
fi111 method to draw the pattern to the canvas.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 14.13: pattern.htm]l -->

4 <!-- Creating a pattern using an image on a canvas. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Patterns</title>

9 <script>

10 var image = new Image();

11 image.src = "yellowflowers.png";

12

13 function start()

14 {

15 var canvas = document.getElementById("pattern™);
16 var context = canvas.getContext("2d");

17 var pattern = context.createPattern(image, "repeat");
18 context.rect(5, 5, 385, 200);

19 context.fil1Style = pattern;
20 context.fi11(Q);
21 } // end function start
22
23 window.addEventListener("load", start, false);
24 </script>
25 </head>

Fig. 14.13 | Creating a pattern using an image on a canvas. (Part | of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

26 <body>

27 <canvas 1id = "pattern” width = "400" height = "200"
28 style = "border: 1lpx solid black;">

29 </canvas>

30 </body>

31 </html>

C @ file:///C:/books/2011/IW3HTP5/exam T |

. :
: i &
- |
y oy
e

\ f,q&;
-

Fig. 14.13 | Creating a pattern using an image on a canvas. (Part 2 of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.14 Transformations

» The next several examples show you how to
use canvas transformation methods
including translate, scale, rotate and
transform.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.14.1 scale and translate Methods:
Drawing Ellipses

» Figure 14.14 demonstrates how to draw ellipses.

» We change the transformation matrix (the coordinates) on the
canvas using the translate method so that the center of the
canvas becomes the origin (0, 0).

» To do this, we use half the canvas width as the x-coordinate
and half the canvas height as the y-coordinate.

» This will enable us to center the ellipse on the canvas.

» We then use the scale method to stretch a circle to create an

ellipse.

- The xvalue represents the horizontal scale factor, the yvalue represents
the vertical scale factor—in this case, our scale factor indicates that the
ratio of the width to the height is 1:3, which will create a tall, thin ellipse.

» Next, we draw the circle that we want to stretch using the
beginPath method to start the path, then the arc method to
draw the circle.

» The x- and y~coordinates for the center of the circle are (0,
0), which is now the center of the canvas (not the top-left

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 14.14: ellipse.htm]l -->

4 <!-- Drawing an ellipse on a canvas. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Ellipse</title>

9 </head>

10 <body>

11 <l-- vertical ellipse -->

12 <canvas id = "drawEll1ipse” width = "200" height = "200"
13 style = "border: 1lpx solid black;">

14 </canvas>

15 <script>

16 var canvas = document.getElementById("drawElTlipse™);
17 var context = canvas.getContext("2d")

18 context.translate(canvas.width / 2, canvas.height / 2);
19 context.scale(l, 3);
20 context.beginPath();
21 context.arc(0, 0, 30, 0, 2 * Math.PI, true);
22 context.fill1Style = "orange";
23 context.fi11(Q);
24 </script>

Fig. 14.14 | Drawing an ellipse on a canvas. (Part | of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

<!-- horizontal ellipse -->

<canvas id
style =

</canvas>

<script>

= "drawElTipse2” width = "200" height = "200"
"border: 1lpx solid black;">

var canvas = document.getElementById("drawEllipse2™);
var context = canvas.getContext("2d")

context

context.
context.

context
context

context.

</script>
</body>
</html>

.translate(canvas.width / 2, canvas.height / 2);
scale(3, 2);

beginPath();

.arc(0, 0, 30, 0, 2 * Math.PI, true);

.fi11Style = "indigo";

fi110;

Fig. 14.14 | Drawing an ellipse on a canvas. (Part 2 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Orange ellipse
where the scale
of the width to the
heightis 1, 3

C @ file///C:/books/2011/IW3HTP5/examples/chl4/ 55 X\

-~

Indigo ellipse
where the scale

of the width to
the height is 3, 2

1

Fig. 14.14 | Drawing an ellipse on a canvas. (Part 3 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.14.1 scale and translate Methods:
Drawing Ellipses (cont.)

» Next, we create a horizontal purple ellipse
on a separate canvas.

» We use a scale of 3, 2, indicating that the
ratio of the width to the height is 3:2.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.14.2 rotate Method: Creating an

Animation

» Figure 14.15 uses the rotate method to create an
animation of a rotating rectangle on a canvas.

» First, we create the JavaScript function
startRotating.

» We change the transformation matrix on the
canvas using the translate method, making
the center of the canvas the origin with the x, y
values (0, 0). This allows us to rotate the
rectangle (which is centered on the canvas)
around its center.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 14.15: rotate.html -->

4 <!-- Using the rotate method to rotate a rectangle on a canvas. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Rotate</title>

9 </head>

10 <body>

11 <canvas id = "rotateRectangle” width = "200" height = "200"
12 style = "border: 1lpx solid black;">

13 </canvas>

14 <script>

15 var canvas = document.getElementById("'rotateRectangle™);
16 var context = canvas.getContext("2d")

17

18 function startRotating()

19 {
20 context.translate(canvas.width / 2, canvas.height / 2);
21 setInterval (rotate, 10);
22 }
23

Fig. 14.15 | Using the rotate method to rotate a rectangle on a
canvas. (Part | of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

24 function rotate()

25 {

26 context.clearRect(-100, -100, 200, 200);
27 context.rotate(Math.PI / 360);

28 context.fill1Style = "Time";

29 context.fillRect(-50, -50, 100, 100);

30 }

31

32 window.addEventListener("load", startRotating, false);
33 </script>

34 </body>

35 </html>

Fig. 14.15 | Using the rotate method to rotate a rectangle on a
canvas. (Part 2 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

@ Rotate
&= C @ file///C:/books/2011/IW3HTPS/examples/chl4/ 55 X\

m

1

Fig. 14.15 | Using the rotate method to rotate a rectangle on a
canvas. (Part 3 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.14.2 rotate Method: Creating an

Animation (cont.)

>

We use the setInterval method of the window
object. The first argument is the name of the function

to call (rotate) and the second is the number of
milliseconds between calls.

Next, we create the JavaScript function rotate.

We use the clearRect method to clear the rectangle’s
pixels from the canvas, converting them back to
transparent as the rectangle rotates. This method
takes four arguments—Lx, y, width and height.

Next, the rotate method takes one argument—the
angle of the clockwise rotation, expressed in radians.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.14.3 transform Method: Drawing

Skewed Rectangles

4

The transform method allows you to skew, scale, rotate and
translate elements without using the separate transformation
methods discussed earlier in this section.

The transform method takes six arguments in the format (
a b, c d efr).

The first argument, a, is the x-scale—the factor by which to
scale the element horizontally.

The second argument, b, is the y~skew.
The third argument, ¢, is the x-skew.

The fourth argument, d, is the y~scale—the factor by which to
scale the element vertically.

The fifth argument, ¢, is the x-translation and the sixth
argument, /, is the y~translation.

The default x- and y~scale values are 1. The default values of
the x- and y~skew and the x- and p~translation are O,
meaning there is no skew or translation.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.14.3 transform Method: Drawing
Skewed Rectangles (cont.)

» Figure 14.16 uses the transform method to
skew, scale and transl/ate two rectangles.

» On the first canvas (lines 12-32), we declare
the variable rectanglewidth and assign it
the value 120, and declare the variable
rectangleHeight and assign it the value 60

(lines 18-19).

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 14.16: skew.html -->

4 <!-- Using the translate and transform methods to skew rectangles. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Skew</title>

9 </head>

10 <body>

11 <l-- skew left -->

12 <canvas id = "transform” width = "320" height = "150"
13 style = "border: 1px solid Black;">

14 </canvas>

15 <script>

16 var canvas = document.getElementById("transform™);
17 var context = canvas.getContext("2d");

18 var rectangleWidth = 120;

19 var rectangleHeight = 60;
20 var scaleX = 2;
21 var skewY = 0;
22 var skewX = 1;
23 var scaleY = 1;

Fig. 14.16 | Using the translate and transform methods to skew
rectangles. (Part | of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

var translationX = -10;

var translationY = 30;

context.translate(canvas.width / 2, canvas.height / 2);

context.transform(scaleX, skewY, skewX, scaleY,
translationX, translationY);

context.fi11Style = "red";

context.fillRect(-rectanglewWidth / 2, -rectangleHeight / 2,
rectangleWidth, rectangleHeight);

</script>

<!l-- skew right -->

<canvas id = "transform2" width = "220" height = "150"
style = "border: 1lpx solid Black;">

<script>

var canvas = document.getElementById("transform2');
var context = canvas.getContext("2d");

var rectangleWidth = 120;

var rectangleHeight = 60;

var scaleX = 1;

var skewY = 0;

var skewX = -1.5;

var scaleY = 2;

var translationX = 0;

Fig. 14.16 | Using the transTlate and transform methods to skew
rectangles. (Part 2 of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

47 var translationY = 0;

48 context.translate(canvas.width / 2, canvas.height / 2);

49 context.transform(scaleX, skewY, skewX, scaleY,

50 translationX, translationY);

51 context.fi11Style = "blue";

52 context.fillRect(-rectangleWidth / 2, -rectangleHeight / 2,
53 rectangleWidth, rectangleHeight);

54 </script>

55 </body>

56 </html>

Fig. 14.16 | Using the translate and transform methods to skew
rectangles. (Part 3 of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

C @ file:///C;/books/2011/IW3HTP5/examples/ch14/figl4_16/skew.ntml ¢
Red rectangle skewed left, scaled Blue rectangle skewed right

horizontally and translated to the left and and scaled vertically
down from the canvas’s point of origin

m

1

Fig. 14.16 | Using the translate and transform methods to skew
rectangles. (Part 4 of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.15 Text

» Figure 14.17 shows you how to draw text on
a canvas.

» We use the font attribute to specify the style,
size and font of the text.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 14.17: text.html -->

4 <!-- Drawing text on a canvas. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Text</title>

9 </head>

10 <body>

11 <canvas id = "text” width = "230" height = "100"
12 style = "border: 1lpx solid black;">

13 </canvas>

14 <script>

15 var canvas = document.getElementById("text");
16 var context = canvas.getContext("2d")

17

18 // draw the first Tine of text

19 context.fill1Style = "red";
20 context.font = "Hitalic 24px serif";
21 context.textBaseline = "top";
22 context.fillText ("HTML5 Canvas'", 0, 0);
23

Fig. 14.17 | Drawing text on a canvas. (Part | of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

24
25
26
27
28
29
30
31
32

// draw

context.
.textAlign = "center";
context.
context.
.strokeText("HTML5 Canvas', 115, 50);

context

context
</script>
</body>
</html>

[talic, serif, red text with
a textBaseline
attribute of top

Bold, serif text with a

the second line of text
font = "bold 30px sans-serif";

TineWidth = 2;
strokeStyle = "navy”;

() Text
C @ file)///C:/books/2011/IW3HTP5/examples/ch14/ kAl

s

HTMLS5 Canvas

m

textAlign attribute of
center

HTMLS CGanvas

4

Fig. 14.17 | Drawing text on a canvas. (Part 2 of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.15 Text (cont.)

» Next, we use textBaseline attribute to specify
the alignment points of the text.

» There are six different textBaseline
attribute values (Fig. 14.18).

» To see how each value aligns the font, see the

graphic in the HTML5 canvas specification at

- http://www.whatwg.org/specs/web-
apps/current-work/multipage/the-canvas-
element.html#text-0

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Value Description

top Top of the em square

hanging Hanging baseline

middle Middle of the em square

alphabetic Alphabetic baseline (the default value)
ideographic Ideographic baseline

bottom Bottom of the em square

Fig. 14.18 | textBaseline values.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.15 Text (cont.)

» The fillText method draws the text to the canvas.
This method takes three arguments.

> The first is the text being drawn to the canvas.

> The second and third arguments are the x- and)~
coordinates.

> You may include the optional fourth argument, maxwidth,
to limit the width of the text.

» We center the second line of text on the canvas
using the textAlign attribute which specifies the
horizontal alignment of the text relative to the x-
coordinate of the text.

» Fig. 14.19 describes the textAlign attribute
alues.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Value Description

Teft Text is left aligned.

right Text is right aligned.

center Text is centered.

start (the default value) Text is left aligned if the start of the line is

left-to-right; text is right aligned if the start of
the text is right-to-left.

end Text is right aligned if the end of the line is
left-to-right; text is left aligned if the end of
the text is right-to-left.

Fig. 14.19 | textAlign attribute values.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.15 Text (cont.)

» The strokeStyle specifies the color of the
teXxt.

» Finally, we use strokeText to specify the
text being drawn to the canvas and its x-
and y-coordinates.

» By using strokeText instead of f111Text,
we draw outlined text instead of filled text.

» Keep in mind that once text is on a canvas

it’s just bits—it can no longer be manipulated
as text.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.16 Resizing the canvas to Fill the
Browser Window

» Figure 14.20 demonstrates how to
dynamically resize a canvas to fill the
window.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 14.20: fillingwindow.html -->

4 <!-- Resizing a canvas to fill the window. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Filling the Window</title>

9 <style type = "text/css''>

10 canvas { position: absolute; left: Opx; top: Opx;
11 width: 100%; height: 100%; }

12 </style>

13 </head>

14 <body>

15 <canvas id = "resize'></canvas>

Fig. 14.20 | Dynamically resizing a canvas to fill the window. (Part |
of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

16 <script>

17 function draw()

I8 {

19 var canvas = document.getElementById("resize"™);
20 var context = canvas.getContext("2d");

21 context.fil1Style = "yellow";

22 context.fillRect(

23 0, 0, context.canvas.width, context.canvas.height);
24 } // end function draw

25

26 window.addEventListener("load", draw, false);

27 </script>

28 </body>

29 </html>

Fig. 14.20 | Dynamically resizing a canvas to fill the window. (Part 2
of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

(©) Filling the Window

<« C @ file:///C:/books/2011/IW3HTP5/examples/ 55 X\

The yellow
canvas fills the
browser window

Fig. 14.20 | Dynamically resizing a canvas to fill the window. (Part 3
of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.16 Resizing the canvas to Fill the
Browser Window (cont.)

» Use a CSS style sheet to set the position of
the canvas to absolute and set both its
width and height to 100%, rather than using
fixed coordinates.

» This places the canvas at the top left of the
screen and allows the canvas width and
height to be resized to 100% of those of the
window.

» Do not include a border on the canvas.

» We use JavaScript function draw to draw the

anvas when the application is rendered.
AR

) \\"\“\ N\ \
\ A\ '\

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.16 Resizing the canvas to Fill the
Browser Window (cont.)

» f111Rect draws the color to the canvas.
Recall that in previous examples, the four
coordinates we used for method fi1l1Rect
were X, y, X1, yl, where x1 and y1
represent the coordinates of the bottom-right
corner of the rectangle.

» In this example, the x- and y-coordinates are
(0, 0)—the top left of the canvas.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.16 Resizing the canvas to Fill the
Browser Window (cont.)

» The the x1 value is context.canvas.width

and the y1 value is context.value.height,
so no matter the size of the window, the x1

value will always be the width of the canvas
and the y1 value will always be the height of
the canvas.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.17 Alpha Transparency

» In Fig. 14.21, the globalAlpha attribute is used to
demonstrate three different alpha transparencies.

» The globalAlpha value can be any number
between 0 (fully transparent) and 1 (the default
value, which is fully opaque).

- The first canvas has a globalAlpha attribute value of 0.9
to create a circle that’s mostly opague.

- The second canvas has a globalAlpha attribute value of
0.5 to create a circle that's semitransparent.

- The third canvas has a globalAlpha attribute value of
0.15 to create a circle that’s a/most entirely transparent.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

VOO~ UND WN =

10
11
12
13
14
15
16
17
18
19
20
21
22
23

<!DOCTYPE html>

<!-- Fig. 14.21: alpha.html -->

<!l-- Using the globalAlpha attribute on a canvas. -->
<html>
<head>
<meta charset = "utf-8">
<title>Alpha Transparency</title>
</head>
<body>
<!-- 0.75 alpha value -->

<canvas id = "alpha" width = "200" height = "200"
style = "border: 1lpx solid black;">

</canvas>

<script>
var canvas = document.getElementById("alpha™);
var context = canvas.getContext("2d")
context.beginPath();
context.rect(10, 10, 120, 120);
context.fil1Style = "purple”;
context.fi11();
context.globalAlpha = 0.9;

Fig. 14.21 | Using the gTobalAlpha attribute on a canvas. (Part |
of 4.)

Copyright © Pearson, Inc. 2013. All

Rights Reserved.

24 context.beginPath();

25 context.arc(120, 120, 65, 0, 2 * Math.PI, false);
26 context.fil1Style = "Time";

27 context.fi11();

28 </script>

29

30 <!-- 0.5 alpha value -->

31 <canvas id = "alpha2” width = "200" height = "200"
32 style = "border: 1lpx solid black;">

33 </canvas>

34 <script>

35 var canvas = document.getElementById("alpha2™);
36 var context = canvas.getContext('2d")

37 context.beginPath();

38 context.rect(10, 10, 120, 120);

39 context.fill1Style = "purple”;

40 context.fi11(0);

41 context.globalAlpha = 0.5;

42 context.beginPath();

43 context.arc(120, 120, 65, 0, 2 * Math.PI, false);
44 context.fil1Style = "Time";

45 context.fi11();

46 </script>

Fig. 14.21 | Using the gTobalAlpha attribute on a canvas. (Part 2
of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

47

48 <!-- 0.15 alpha value -->

49 <canvas id = "alpha3”™ width = "200" height = "200"
50 style = "border: 1lpx solid black;">

51 </canvas>

52 <script>

53 var canvas = document.getElementById("alpha3');
54 var context = canvas.getContext("2d")

55 context.beginPath();

56 context.rect(10, 10, 120, 120);

57 context.fi11Style = "purple”;

58 context.fi11();

59 context.globalAlpha = 0.15;

60 context.beginPath();

61 context.arc(120, 120, 65, 0, 2 * Math.PI, false);
62 context.fil1Style = "Time";

63 context.fi11(0);

64 </script>

65 </body>

66 </html>

Fig. 14.21 | Using the globalAlpha attribute on a canvas. (Part 3
of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

@ Alpha Transparency
C O file:///C;/books/2011/IW3HTP5/examples/ch14/figl4_l16/alphahtml ¢ X

»

m

1

a) globalAlpha value of b) globalAlpha value of c) globalAlpha value of
0.9 makes the circle only 0.5 makes the circle semi- 0.15 makes the circle
slightly transparent transparent almost entirely transparent

Fig. 14.21 | Using the gTobalATlpha attribute on a canvas. (Part 4
of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.18 Compositing

» Compositing allows you to control the layering of
shapes and images on a canvas using two
attributes—the globalAlpha attribute described in
the previous example, and the
globalCompositeOperation attribute.

» There are 11 globalCompositeOperation
attribute values (Fig. 14.22).

» The source is the image being drawn to a canvas.
» The destination is the current bitmap on a canvas.

» In Fig. 14.23, we demonstrate six of the
compositing effects.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Description

source-atop

source-in

source-out

source-over
(default)

The source is placed on top of the destination image. If both
images are opaque, the source is displayed where the images over-
lap. If the source is transparent but the destination image is opaque,
the destination image is displayed where the images overlap. The
destination image is transparent where there is no overlap.

The source image is displayed where the images overlap and both
are opaque. Both images are transparent where there is no overlap.

If the source image is opaque and the destination image is transpar-
ent, the source image is displayed where the images overlap. Both
images are transparent where there is no overlap.

The source image is placed over the destination image. The source
image is displayed where it’s opaque and the images overlap. The
destination image is displayed where there is no overlap.

Fig. 14.22 | globalCompositeOperation values. (Part | of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Description

destination-atop The destination image is placed on top of the source image. If both
images are opaque, the destination image is displayed where the
images overlap. If the destination image is transparent but the
source image is opaque, the source image is displayed where the
images overlap. The source image is transparent where there is no

overlap.

destination-in The destination image is displayed where the images overlap and
both are opaque. Both images are transparent where there is no
overlap.

destination-out If the destination image is opaque and the source image is transpar-

ent, the destination image is displayed where the images overlap.
Both images are transparent where there is no overlap.

destination-over The destination image is placed over the source image. The destina-
tion image is displayed where it’s opaque and the images overlap.
The source image is displayed where there is no overlap.

Tighter Displays the sum of the source-image color and destination-image
color—up to the maximum RGB color value (255)—where the
images overlap. Both images are normal elsewhere.

Fig. 14.22 | globalCompositeOperation values. (Part 2 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

Value Description

copy If the images overlap, only the source image is displayed (the desti-
nation is ignored).

xor Source-image xor (exclusive-or) destination. The images are trans-
parent where they overlap and normal elsewhere.

Fig. 14.22 | globalCompositeOperation values. (Part 3 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 14.23: image.html -->

4 <!-- Compositing on a canvas. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Compositing</title>

9 </head>

10 <body>

11 <canvas id = "composite” width = “220" height = "200">
12 </canvas>

13 <script>

14 function draw()

15 {

16 var canvas = document.getElementById("composite™);
17 var context = canvas.getContext("2d")

18 context.fil1Style = "red";

19 context.fillRect(5, 50, 210, 100);
20
21 // source-atop
22 context.globalCompositeOperation = "source-atop";
23 context.fil1Style = "Time";
24 context.fillRect (10, 20, 60, 60);
25

| Demonstrating compositing on a canvas. (Part | of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

26 // source-over

27 context.globalCompositeOperation = "source-over";
28 context.fillStyle = "Time";

29 context.fillRect (10, 120, 60, 60);

30

31 // destination-over

32 context.globalCompositeOperation = "destination-over";
33 context.fil1Style = "Time";

34 context.fillRect (80, 20, 60, 60);

35

36 // destination-out

37 context.globalCompositeOperation = "destination-out";
38 context.fil1Style = "Time";

39 context.fillRect (80, 120, 60, 60);

40

41 // Tlighter

42 context.globalCompositeOperation = “"lighter";

43 context.fil1Style = "Time";

44 context.fillRect (150, 20, 60, 60);

45

46 // xor

47 context.globalCompositeOperation = "xor'";

48 context.fill1Style = "Time";

49 context.fill1Rect (150, 120, 60, 60);

50 } // end function draw

Fig. 14.23 | Demonstrating compositing on a canvas. (Part 2 of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

51

52 window.addEventListener("load", draw, false);
53 </script>

54 </body>

55 </html>

Fig. 14.23 | Demonstrating compositing on a canvas. (Part 3 of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

destination-over Tighter displays the

shows the red destination overlapping area in yellow
where the images overlap, (the sum of the red and

and the 1ime source lime values). Both images

where there’s no overlap. are normal elsewhere.

source-atop shows the
Time source where the

shapes overlap and —

transparency elsewhere.

source-over shows the
Time source where the
shapes overlap and where ~ |
there’s no overlap.

file:///C:/bpoks/2011/IW3HTP5/examples/ch14/ 55 A

destination-out xor displays
shows transparency transparency where
where the shapes the images overlap.
overlap and where Both images are
there’s no overlap. normal elsewhere.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.19 Cannon Game

» The Cannon Game app challenges you to
destroy a seven-piece moving target before a
ten-second time limit expires (Fig. 14.24).

> The Cannon Game currently works in Chrome,
Internet Explorer 9 and Safari. It does not work
properly in Opera, Firefox, iPhone and Android.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

m

€ C @ testdeitel.com/iw3htp5/chl4/figld_24/cannonhtml S5 | A
3 HTMLS Docs

Time remaining Time remaining: 9 \

Gap from previously —__{ |
hit target section

Cannonball in
flight toward .

the target
> Target

I Blue target
piece

Yellow target
/ piece

Blocker

Fig. 14.24 | Completed Cannon Game app.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.19 Cannon Game (cont.)

» The game consists of four visual
components—a cannon that you control, a
cannonball fired by the cannon, the seven-
piece target and a moving bl/ocker that
defends the target to make the game more
challenging.

» You aim the cannon by clicking the screen—
the cannon then aims where you clicked and
fires a cannonball. You can fire a cannonball
only if there is not another one on the screen.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.19 Cannon Game (cont.)

» The game begins with a 70-second time /imit. Each
time you hit a target section, you are rewarded with
three seconds being added to the time limit; each
time you hit the blocker, you are penalized with
two seconds being subtracted from the time limit.

» You win by destroying all seven target sections

before time runs out. If the timer reaches zero, you
lose.

» When the game ends, it displays an alert dialog
indicating whether you won or lost, and shows the
number of shots fired and the elapsed time

(Fig. 14.25).

\ Wk
s \ A\X
A % \

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

a) alert dialog displayed after user b) alert dialog displayed when game ends

destroys all seven target sections before user destroys all seven targets
The page at test.deitel.com says: x| The page at test.deitel.com says: x|
You Won! You lost
Shots fired: 16 Shots fired: 10
Total time: 18 seconds Total time: 13 seconds

Fig. 14.25 | Cannon Game app alerts showing a win and a loss.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.19 Cannon Game (cont.)

» When the cannon fires, the game plays a firing
sound.

» The target consists of seven pieces. When a
cannonball hits a piece of the target, a g/ass-
breaking sound plays and that piece disappears
from the screen.

» When the cannonball hits the blocker, a A/t sound
plays and the cannonball bounces back.

» The blocker cannot be destroyed.

» Figure 14.26 shows the HTML5 document for the
Cannon Game.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 14.26: cannon.html -->

4 <!-- Cannon Game HTMLS5 document. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Cannon Game</title>

9 <style type = "text/css'>

10 canvas { border: lpx solid black; }

11 </style>

12 <script src = "cannon.js''></script>

13 </head>

14 <body>

15 <audio 1id = "blockerSound” preload = "auto'>

16 <source src = "blocker hit.mp3" type = "audio/mpeg"></audio>
17 <audio 1id = "targetSound” preload = "auto’>

18 <source src = ""target hit.mp3" type = "audio/mpeg'></audio>
19 <audio 1id = "cannonSound"” preload = "auto">
20 <source src = "cannon_ fire.mp3" type = "audio/mpeg"></audio>
21 <canvas id = "theCanvas" width = "480" height = "600"></canvas>
22 <p><input 1id = "startButton” type = "button” value = "Start Game'>
23 </p>
24 </body>
25 </html>

Fig. 14.26 | Cannon Game HTMLS5 document.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.19.1 Instance Variables and
Constants

» Figure 14.27 lists the Cannon Game’s
numerous constants and instance variables.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

// Fig. 14.27 cannon.js

// Logic of the Cannon Game

var canvas; // the canvas

var context; // used for drawing on the canvas

// constants for game play

var TARGET_PIECES = 7; // sections in the target

var MISS_PENALTY = 2; // seconds deducted on a miss

var HIT_REWARD = 3; // seconds added on a hit

10 var TIME_INTERVAL = 25; // screen refresh interval in milliseconds

VOO~ D WN =

12 // variables for the game loop and tracking statistics

I3 var intervalTimer; // holds interval timer

14 var timerCount; // times the timer fired since the last second
I5 var timelLeft; // the amount of time left in seconds

16 var shotsFired; // the number of shots the user has fired

17 var timeElapsed; // the number of seconds elapsed

Fig. 14.27 | Cannon Game variable declarations. (Part | of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

// variables for the blocker and target

var blocker; // start and end points of the blocker

var blockerDistance; // blocker distance from left

var blockerBeginning; // blocker distance from top

var blockerEnd; // blocker bottom edge distance from top

var initialBlockerVelocity; // initial blocker speed multiplier
var blockerVelocity; // blocker speed multiplier during game

var target; // start and end points of the target

var targetDistance; // target distance from left

var targetBeginning; // target distance from top

var targetEnd; // target bottom's distance from top

var piecelength; // length of a target piece

var initialTargetVelocity; // initial target speed multiplier
var targetVelocity; // target speed multiplier during game

var lineWidth; // width of the target and blocker
var hitStates; // is each target piece hit?
var targetPiecesHit; // number of target pieces hit (out of 7)

Fig. 14.27 | Cannon Game variable declarations. (Part 2 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

// variables for the cannon and cannonball

var
var
var
var
var
var
var
var
var
var

cannonball; // cannonball image's upper-Tleft corner
cannonballVelocity; // cannonball's velocity
cannonballOnScreen; // is the cannonball on the screen
cannonballRadius; // cannonball radius
cannonballSpeed; // cannonball speed

cannonBaseRadius; // cannon base radius

cannonLength; // cannon barrel Tength

barrelEnd; // the end point of the cannon's barrel
canvasWidth; // width of the canvas

canvasHeight; // height of the canvas

// variables for sounds
var targetSound;

var
var

cannonSound;
blockerSound;

Fig. 14.27 | Cannon Game variable declarations. (Part 3 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.19.2 Function setupGame

» Figure 14.28 shows function setupGame.
S

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

56
57
58
39
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79

// called when the app first launches
function setupGame()

{

// stop timer if document unload event occurs
document.addEventListener("unload"”, stopTimer, false);

// get the canvas, its context and setup its click event handler
canvas = document.getElementById("theCanvas");
context = canvas.getContext("2d");

// start a new game when user clicks Start Game button
document.getElementById("startButton”).addEventListener(
"click™, newGame, false);

// JavaScript Object representing game 1items

blocker = new Object(); // object representing blocker Tine
blocker.start = new Object(); // will hold x-y coords of line start
blocker.end = new Object(); // will hold x-y coords of line end
target = new Object(); // object representing target line
target.start = new Object(); // will hold x-y coords of Tline start
target.end = new Object(); // will hold x-y coords of Tine end
cannonball = new Object(); // object representing cannonball point
barrelEnd = new Object(); // object representing end of cannon barrel

Fig. 14.28 | Cannon Game function setupGame. (Part | of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

80 // initialize hitStates as an array

81 hitStates = new Array(TARGET PIECES);

82

83 // get sounds

84 targetSound = document.getElementById("targetSound™);
85 cannonSound = document.getElementById("cannonSound"”);
86 blockerSound = document.getElementById("blockerSound”);
87 1} // end function setupGame

88

Fig. 14.28 | Cannon Game function setupGame. (Part 2 of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.19.3 Functions startTimer and
stopTimer
» Figure 14.29 presents functions startTimer

and stopTimer which manage the click
event handler and the interval timer.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

89 // set up interval timer to update game
90 function startTimer()

91 {

92 canvas.addEventListener("click™, fireCannonball, false);

93 intervalTimer = window.setInterval(updatePositions, TIME INTERVAL);
94 1} // end function startTimer

95

96 // terminate 1interval timer
97 function stopTimer()

98 {

99 canvas.removeEventListener("click”, fireCannonball, false);
100 window.clearInterval(intervalTimer);

101 } // end function stopTimer

102

Fig. 14.29 | Cannon Game functions startTimer and
stopTimer.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.19.4 Function resetElements

» Function resetElements (Fig. 14.30) is
called by function newGame to position and
scale the size of the game elements relative
to the size of the canvas.

» The calculations performed here scale the
game’s on-screen elements based on the
canvas’s pixel width and height—we arrived
at our scaling factors via trial and error until
the game surface looked good.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

103 // called by function newGame to scale the size of the game elements
104 // relative to the size of the canvas before the game begins
105 function resetElements()

106 {

107 var w = canvas.width;

108 var h = canvas.height;

109 canvasWidth = w; // store the width

110 canvasHeight = h; // store the height

1l cannonBaseRadius = h / 18; // cannon base radius 1/18 canvas height
112 cannonLength = w / 8; // cannon length 1/8 canvas width

113

114 cannonballRadius = w / 36; // cannonball radius 1/36 canvas width
115 cannonballSpeed = w * 3 / 2; // cannonball speed multiplier

116

117 TineWidth = w / 24; // target and blocker 1/24 canvas width

118

Fig. 14.30 | Cannon Game function resetETements. (Part | of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

119 // configure instance variables related to the blocker

120 blockerDistance = w * 5 / 8; // blocker 5/8 canvas width from Tleft
121 blockerBeginning = h / 8; // distance from top 1/8 canvas height
122 blockerénd = h * 3 / 8; // distance from top 3/8 canvas height

123 initialBlockerVelocity = h / 2; // initial blocker speed multiplier
124 blocker.start.x = blockerDistance;

125 blocker.start.y = blockerBeginning;

126 blocker.end.x = blockerDistance;

127 blocker.end.y = blockerEnd;

128

129 // configure instance variables related to the target

130 targetDistance = w * 7 / 8; // target 7/8 canvas width from Teft
131 targetBeginning = h / 8; // distance from top 1/8 canvas height
132 targeténd = h * 7 / 8; // distance from top 7/8 canvas height

133 piecelLength = (targetEnd - targetBeginning) / TARGET PIECES;

134 initialTargetVelocity = -h / 4; // initial target speed multiplier
135 target.start.x = targetDistance;

136 target.start.y = targetBeginning;

137 target.end.x = targetDistance;

138 target.end.y = targetEnd;

139

140 // end point of the cannon's barrel initially points horizontally
141 barrelEnd.x = cannonLength;

142 barrelEnd.y = h / 2;
143 } // end function resetElements
144

. 14.30 | Cannon Game function resetElements. (Part 2 of 2.)

.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.19.5 Function newGame

» Function newGame (Fig. 14.31) is called when
the user clicks the Start Game button; the
function initializes the game’s instance
variables.

<

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

145 // reset all the screen elements and start a new game
146 function newGame()

147 {
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

resetElements(); // reinitialize all the game elements
stopTimer(); // terminate previous interval timer

// set every element of hitStates to false--restores target pieces
for (var i = 0; i < TARGET PIECES; ++1i)
hitStates[i] = false; // target piece not destroyed

targetPiecesHit = 0; // no target pieces have been hit
blockerVelocity = initialBlockerVelocity; // set initial velocity
targetVelocity = initialTargetVelocity; // set initial velocity
timeLeft = 10; // start the countdown at 10 seconds

timerCount = 0; // the timer has fired 0 times so far
cannonballOnScreen = false; // the cannonball is not on the screen
shotsFired = 0; // set the initial number of shots fired
timeElapsed = 0; // set the time elapsed to zero

startTimer(); // starts the game loop

165 } // end function newGame

166

Fig. 14.31 | Cannon Game function newGame.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.19.6 Function updatePositions:

Manual Frame-by-Frame Animation and
Simple Collision Detection

» T
U
e

» T

nis app performs its animations manually by
ndating the positions of all the game
ements at fixed time intervals.

ne interval timer (Fig. 14.29) in function

startTimer calls function updatePositions
(Fig. 14.32) to update the game every 25
milliseconds (i.e., 40 times per second).

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

167 // called every TIME_INTERVAL milliseconds
168 function updatePositions()

169 {

170 // update the blocker's position

171 var blockerUpdate = TIME INTERVAL / 1000.0 * blockerVelocity;
172 blocker.start.y += blockerUpdate;

173 blocker.end.y += blockerUpdate;

174

175 // update the target's position

176 var targetUpdate = TIME INTERVAL / 1000.0 * targetVelocity;
177 target.start.y += targetUpdate;

178 target.end.y += targetUpdate;

179

180 // if the blocker hit the top or bottom, reverse direction
181 if (blocker.start.y < 0 || blocker.end.y > canvasHeight)
182 blockerVelocity *= -1;

183

184 // if the target hit the top or bottom, reverse direction
185 if (target.start.y < 0 || target.end.y > canvasHeight)

186 targetVelocity *= -1;

187

Fig. 14.32 | Cannon Game function updatePositions. (Part | of
5.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

if (cannonball10nScreen) // if there is currently a shot fired

{

// update cannonball position
var interval = TIME INTERVAL / 1000.0;

cannonballVelocityX;
cannonballVelocityY;

cannonball.x += interval *
cannonball.y += interval *
// check for collision with blocker
if (cannonballVelocityX > 0 &&
cannonball.x + cannonballRadius >= blockerDistance &&
cannonball.x + cannonballRadius <= blockerDistance + lineWidth &&
cannonball.y - cannonballRadius > blocker.start.y &&
cannonball.y + cannonballRadius < blocker.end.y)

{
blockerSound.play(); // play blocker hit sound
cannonballVelocityX *= -1; // reverse cannonball's direction
timeLeft -= MISS PENALTY; // penalize the user

} // end if

Fig. 14.32 | Cannon Game function updatePositions. (Part 2 of
5.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

208 // check for collisions with Teft and right walls

209 else if (cannonball.x + cannonballRadius > canvasWidth ||

210 cannonball.x - cannonballRadius < 0)

211 {

212 cannonballOnScreen = false; // remove cannonball from screen
213 } // end else if

214

215 // check for collisions with top and bottom walls

216 else if (cannonball.y + cannonballRadius > canvasHeight ||

217 cannonball.y - cannonballRadius < 0)

218 {

219 cannonballOnScreen = false; // make the cannonball disappear
220 } // end else if

221

222 // check for cannonball collision with target

223 else if (cannonballVelocityX > 0 &&

224 cannonball.x + cannonballRadius >= targetDistance &&

225 cannonball.x + cannonballRadius <= targetDistance + TineWidth &&
226 cannonball.y - cannonballRadius > target.start.y &&

227 cannonball.y + cannonballRadius < target.end.y)

228 {

Fig. 14.32 | Cannon Game function updatePositions. (Part 3 of
5.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

229 // determine target section number (0 is the top)

230 var section =

231 Math.floor((cannonball.y - target.start.y) / piecelLength);
232

233 // check whether the piece hasn't been hit yet

234 if ((section >= 0 && section < TARGET PIECES) &&

235 'hitStates[section])

236 {

237 targetSound.play(); // play target hit sound

238 hitStates[section] = true; // section was hit

239 cannonbal1lOnScreen = false; // remove cannonball

240 timelLeft += HIT_REWARD; // add reward to remaining time
241

242 // if all pieces have been hit

243 if (++targetPiecesHit == TARGET PIECES)

244 {

245 stopTimer(); // game over so stop the interval timer
246 draw(); // draw the game pieces one final time

247 showGameOverDialog("You won!"); // show winning dialog
248 } // end if

249 } // end if

250 } // end else if

251 } // end if

Fig. 14.32 | Cannon Game function updatePositions. (Part 4 of
5.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

252

253 ++timerCount; // increment the timer event counter
254

255 // if one second has passed

256 if (TIME_INTERVAL * timerCount >= 1000)

257 {

258 --timeLeft; // decrement the timer

259 ++timeElapsed; // increment the time elapsed
260 timerCount = 0; // reset the count

261 } // end if

262

263 draw(); // draw all elements at updated positions
264

265 // if the timer reached zero

266 if (timeLeft <= 0)

267 {

268 stopTimer();

269 showGameOverDialog("You lost"); // show the losing dialog

270 } // end if
271 } // end function updatePositions
272

Fig. 14.32 | Cannon Game function updatePositions. (Part 5 of
5.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.19.6 Function updatePositions:
Manual Frame-by-Frame Animation and
Simple Collision Detection (cont.)

» This function also performs simple collision
detection to determine whether the
cannonball has collided with any of the
canvas’s edges, with the blocker or with a
section of the target.

» Game-development frameworks generally
provide more sophisticated, built-in
collision-detection capabilities.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.19.6 Function updatePositions: <

Manual Frame-by-Frame Animation and
Simple Collision Detection (cont.)

» The function begins by updating the
nositions of the blocker and the target.

» Lines 171-173 change the blocker’s position
oy multiplying blockervelocity by the
amount of time that has passed since the last
update and adding that value to the current
x- and y-coordinates.

» Lines 176-178 do the same for the target.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.19.6 Function updatePositions: <
Manual Frame-by-Frame Animation and
Simple Collision Detection (cont.)

» If the blocker has collided with the top or
bottom wall, its direction is reversed by
multiplying its velocity by -1 (lines 181-182).

» Lines 185-186 perform the same check and
adjustment for the full length of the target,
including any sections that have already been
hit.

» Line 188 checks whether the cannonball is on
the screen. If it is, we update its position by
adding the distance it should have traveled

smce the last timer event. This is calculated

Te) mg its velgcp:ylgl;ywbx thzggglmount of

Rght Res

14.19.6 Function updatePositions: <

Manual Frame-by-Frame Animation and

Simple Collision Detection (cont.)

» We perform simple collision detection, based
on the rectangular boundary of the
cannonball. Four conditions must be met if
the cannonball is in contact with the blocker:

- The cannonball has reached the blocker’s distance
from the left edge of the screen.

- The cannonball has not yet passed the blocker.

- Part of the cannonball must be lower than the top
of the blocker.

- Part of the cannonball must be higher than the
bottom of the blocker.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.19.6 Function updatePositions: <
Manual Frame-by-Frame Animation and

Simple Collision Detection (cont.?
» If all these conditions are met, we play
blocker hit sound, reverse the cannonball’s

direction on the screen and penalize the user
by subtracting MISS_PENALTY from
timeLeft.

» We remove the cannonball if it reaches any of
the screen’s edges.

» We then check whether the cannonball has hit
the target.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.19.6 Function updatePositions: <

Manual Frame-by-Frame Animation and

Simple Collision Detection (cont.)

» If the cannonball hit the target, we
determine which section of the target was
hit by dividing the distance between the
cannonball and the bottom of the target by
the length of a piece.

» This expression evaluates to O for the
topmost section and 6 for the bottommost.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.19.7 Function fireCannonball

» When the user clicks the mouse on the

canvas, the click event handler calls function
fireCannonball (Fig. 14.33) to fire a
canhnonball.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

273 // fires a cannonball
274 function fireCannonball(event)

275 {
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

if (cannonballOnScreen) // if a cannonball is already on the screen
return; // do nothing

var angle = alignCannon(event); // get the cannon barrel's angle
// move the cannonball to be inside the cannon

cannonball.x = cannonballRadius; // align x-coordinate with cannon
cannonball.y = canvasHeight / 2; // centers ball vertically

// get the x component of the total velocity
cannonballVelocityX = (cannonballSpeed * Math.sin(angle)).toFixed(0);

// get the y component of the total velocity

cannonballVelocityY = (-cannonballSpeed * Math.cos(angle)).toFixed(0);
cannonballOnScreen = true; // the cannonball is on the screen
++shotsFired; // increment shotsFired

// play cannon fired sound
cannonSound.play(Q);

295 1} // end function fireCannonball

296

Fig. 14.33 | Cannon Game function fireCannonball.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.19.8 Function alignCannon

» Function alignCannon (Fig. 14.34) aims the
cannon at the point where the user clicked
the mouse on the screen.

» We compute the vertical distance of the
mouse click from the center of the screen.

» If this is not zero, we calculate the cannon
barrel’s angle from the horizontal.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

297 // aligns the cannon 1in response to a mouse click
298 function alignCannon(event)

299 {

300 // get the location of the click

301 var clickPoint = new Object();

302 clickPoint.x = event.x;

303 clickPoint.y = event.y;

304

305 // compute the click's distance from center of the screen
306 // on the y-axis

307 var centerMinusY = (canvasHeight / 2 - clickPoint.y);

308

309 var angle = 0; // initialize angle to 0

310

311 // calculate the angle the barrel makes with the horizontal
312 if (centerMinusY !== 0) // prevent division by 0

313 angle = Math.atan(clickPoint.x / centerMinusY);

314

315 // if the click is on the Tower half of the screen

316 if (clickPoint.y > canvasHeight / 2)

317 angle += Math.PI; // adjust the angle

318

Fig. 14.34 | Cannon Game function alignCannon. (Part | of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

319 // calculate the end point of the cannon’s barrel

320 barrelEnd.x = (cannonLength * Math.sin(angle)) .toFixed(0);

321 barrelEnd.y =

322 (-cannonLength * Math.cos(angle) + canvasHeight / 2).toFixed(0);
323

324 return angle; // return the computed angle

325 } // end function alignCannon

326

Fig. 14.34 | Cannon Game function alignCannon. (Part 2 of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

» If the click is on the lower half of the screen
we adjust the angle by Math.PI.

» We then use the cannonLength and the

angle to determine the x- and y~-coordinates
for the end point of the cannon’s barrel—this
is used in function draw (Fig. 14.35) to draw
a line from the cannon base’s center at the

left edge of the screen to the cannon barrel’s
end point.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.19.9 Function draw

» When the screen needs to be redrawn, the

draw function (Fig. 14.35) renders the game’s
on-screen elements—the cannon, the
cannonball, the blocker and the seven-piece
target.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

327 // draws the game elements to the given Canvas
328 function draw()

329 {

330 canvas.width = canvas.width; // clears the canvas (from W3C docs)
331

332 // display time remaining

333 context.fil1Style = "black”;

334 context.font = "bold 24px serif’;

335 context.textBaseline = "top";

336 context.fillText("Time remaining: " + timelLeft, 5, 5);

337

338 // if a cannonball 1is currently on the screen, draw it

339 if (cannonballOnScreen)

340 {

341 context.fill1Style = "gray";

342 context.beginPath();

343 context.arc(cannonball.x, cannonball.y, cannonballRadius,
344 0, Math.PI * 2):

345 context.closePath();

346 context.fil11();

347 } // end if

348

Fig. 14.35 | Cannon Game function draw. (Part | of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

// draw

context.
context.

context

context
context

// draw

context.
context.
.arc(0, canvasHeight / 2, cannonBaseRadius, 0, Math.PI*2);
.closePath();

context.

context
context

// draw

context.

context
context

the cannon barrel
beginPath(); // begin a new path
strokeStyle = "black";

.moveTo(0, canvasHeight / 2); // path origin
context.
.lineWidth = TineWidth; // Tine width
.stroke(); // draw path

TineTo(barrelEnd.x, barrelEnd.y);

the cannon base
beginPath();
fi11Style = "gray";

fi110;

the blocker
beginPath(); // begin a new path

.moveTo(blocker.start.x, blocker.start.y); // path origin
.lineTo(blocker.end.x, blocker.end.y);

context.
context.

TineWidth = TlineWidth; // Tine width
stroke(); //draw path

Fig. 14.35 | Cannon Game function draw. (Part 2 of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

371 // initialize currentPoint to the starting point of the target

372 var currentPoint = new Object();

373 currentPoint.x = target.start.x;

374 currentPoint.y = target.start.y;

375

376 // draw the target

377 for (var i = 0; i < TARGET_PIECES; ++1i)

378 {

379 // if this target piece is not hit, draw it

380 if (!'hitStates[i])

381 {

382 context.beginPath(); // begin a new path for target
383

384 // alternate coloring the pieces yellow and blue
385 if (G % 2 === 0)

386 context.strokeStyle = "yellow";

387 else

388 context.strokeStyle = "blue";

389

390 context.moveTo(currentPoint.x, currentPoint.y); // path origin
391 context.lineTo(currentPoint.x, currentPoint.y + piecelLength);
392 context.lineWidth = TineWidth; // line width

393 context.stroke(); // draw path

394 } // end if

395

Fig. 14.35 | Cannon Game function draw. (Part 3 of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

396 // move currentPoint to the start of the next piece
397 currentPoint.y += piecelLength;

398 } // end for

399 } // end function draw

400

Fig. 14.35 | Cannon Game function draw. (Part 4 of 4.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

<

14.19.10 Function showGameOverDialog

» When the game ends, the
showGameOverDialog function (Fig. 14.36)
displays an alert indicating whether the
player won or lost, the number of shots fired

and the total time elapsed.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

401
402
403
404
405
406
407
408

Fig. 14.36 | Cannon Game function showGameOverDialog.

// display an alert when the game ends
function showGameOverDialog(message)
{
alert(message + "\nShots fired: " + shotsFired +
"\nTotal time: " + timeElapsed + " seconds ");
} // end function showGameOverDialog

window.addEventListener("load", setupGame, false);

Copyright © Pearson, Inc. 2013. All

Rights Reserved.

14.20 save and restore Methods

» The canvas’s state includes its current style and
transformations, which are maintained in a stack.

» The save method is used to save the context’s
current state.

» The restore method restores the context to its
previous state.

» Figure 14.37 demonstrates using the save method
to change a rectangle’s f111Style and the
restore method to restore the f111Style to the
previous settings in the stack.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <!-- Fig. 14.37: saveandrestore.htm]l -->

4 <!-- Saving the current state and restoring the previous state. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Save and Restore</title>

9 </head>

10 <body>

11 <canvas id = "save" width = "400" height = "200">
12 </canvas>

13 <script>

14 function draw()

15 {

16 var canvas = document.getElementById("save");
17 var context = canvas.getContext("2d")

18

19 // draw rectangle and save the settings
20 context.fil1Style = "red"
21 context.fillRect (0, 0, 400, 200);
22 context.save();
23

Fig. 14.37 | Saving the current state and restoring the previous state.
(Part | of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

24 // change the settings and save again

25 context.fil1Style = "orange"

26 context.fillRect (0, 40, 400, 160);

27 context.save();

28

29 // change the settings again

30 context.fil1Style = "yellow"

31 context.fillRect(0, 80, 400, 120);

32

33 // restore to previous settings and draw new rectangle
34 context.restore();

35 context.fillRect (0, 120, 400, 80);

36

37 // restore to original settings and draw new rectangle
38 context.restore();

39 context.fillRect(0, 160, 400, 40);

40 }

41 window.addEventListener("load", draw, false);

42 </script>

43 </body>

44 </html>

Fig. 14.37 | Saving the current state and restoring the previous state.
(Part 2 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

@ Save and Restore ®

C @ filey///C:/books/2011/IW3HTPS/examples/ch14/ 5y A

-,

First rectangle isred ___|

Second rectangle is orange ——

Third rectangle is yellow ——a—

m

Fourth rectangle is restored to orange ___

Fifth rectangle is restored to red —

Fig. 14.37 | Saving the current state and restoring the previous state.
(Part 3 of 3.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.21 A Note on SVG

» Most current browsers also support SVG
(Scalable Vector Graphics), which offers a
different approach to developing 2D
graphics.

» Vector graphics are made of scalable
geometric primitives such as line segments
and arcs.

» SVG is XML-based, so it uses a declarative
approach—you say what you want and SVG
builds it for you.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.21 A Note on SVG

» With SVG, each separate part of your graphic
becomes an object that can be manipulated
through the DOM.

» The DOM manipulation in SVG can degrade
performance, particularly for more complex
graphics.

» SVG graphics easily and accurately scale to
larger or smaller drawing surfaces.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.21 A Note on SVG (cont.)

» SVG is more appropriate for accessibility
applications for people with disabilities. It’s

easier, for example, for people with low
vision or vision impairments to work with the

XML text in an SVG document than with the
pixels in a canvas.

» SVG has better animation capabilities, so
game developers often use a mix of both the

canvas and SVG approaches.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.21 A Note on SVG (cont.)

» SVG is more convenient for cross—platform
graphics, which is becoming especially
important with the proliferation of “form
factors,” such as desktops, notebooks,
smartphones, tablets and various special-
purpose devices such as car navigation
systems.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

14.22 A Note on canvas 3D

» Figure 14.38 lists several websites with fun
and interesting 3D examples.

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

URL Description

http://www.kevs3d.co.uk/dev/html15]ogo/ Spinning 3D HTMLS logo.
http://sebleedelisle.com/demos/GravityParti- A basic 3D particle distribution sys-
cles/ParticlesForces3D2.html tem.
http://www.kevs3d.co.uk/dev/canvask3d/ Includes several 3D shapes that rotate
k3d_test.htm] when clicked.
http://alteredqualia.com/canvasmol/#DNA Spinning 3D molecules.
http://deanm.github.com/pre3d/monster.html A cube that morphs into other 3D
shapes.
http://html5canvastutorials.com/demos/ Click and drag the mouse to smoothly
webg1/htm15_canvas_webgl_3d_world/ change perspective in a 3D room.
http://onepixelahead.com/2010/09/24/10- Ten HTMLS5 canvas 3D examples
awesome-html15-canvas-3d-examples/ including games and animations.
http://sixrevisions.com/web-development/ The tutorial, “How to Create an
how-to-create-an-htm15-3d-engine/ HTMLS 3D Engine.”
http://sebleedelisle.com/2011/02/htm15- The short tutorial, “HTML5 Canvas
canvas-3d-particles-uniform-distribution/ 3D Particles Uniform Distribution.”

Fig. 14.38 | HTML5 canvas 3D demos and tutorials. (Part | of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

URL Description

http://www.script-tutorials.com/ The tutorial, “How to Create Ani-

how-to-create-3d-canvas-object-in-html5/ mated 3D Canvas Objects in
HTML5.”

http://blogs.msdn.com/b/davrous/archive/ The tutorial, “How to Add the 3D

2011/05/27/how-to-add-the-3d-animated-htm15- Animated HTML5 Logo to Your

Togo-into-your-webpages-thanks-to-1t-canvas- Webpages.”

gt.aspx

http://www.bitstorm.it/blog/en/2011/05/ The tutorial, “Draw Old School 3D

3d-sphere-html5-canvas/ Sphere with HTML5.”

Fig. 14.38 | HTMLS5 canvas 3D demos and tutorials. (Part 2 of 2.)

Copyright © Pearson, Inc. 2013. All
Rights Reserved.

