Chapter 15
XML

Internet & World Wide Web
How to Program, 5/e

OBJECTIVES
In this chapter you'll:

m Mark up data using XML.

m Learn how XML namespaces help provide unique XML element and attribute names.

m Create DTDs and schemas for specifying and validating the structure of an XML document.
m Create and use simple XSL style sheets to render XML document data.

m Retrieve and manipulate XML data programmatically using JavaScript.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

15.1 Introduction

15.2 XML Basics

15.3 Structuring Data

15.4 XML Namespaces

15.5 Document Type Definitions (DTDs)
15.6 W3C XML Schema Documents

15.7 XML Vocabularies
15.7.1 MathML™
15.7.2 Other Markup Languages

15.8 Extensible Stylesheet Language and XSL Transformations
15.9 Document Object Model (DOM)
15.10 Web Resources

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

15.1 Introduction

» XML is a portable, widely supported, open
(i.e., nonproprietary) technology for data
storage and exchange

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<

15.2 XML Basics

» XML permits document authors to create markup for virtually
any type of information

= (Can create entirely new markup languages that describe specific types of data,
including mathematical formulas, chemical molecular structures, music and recipes

» XML describes data in a way that human beings can
understand and computers can process.

» An XML parser is responsible for identifying components of
XML documents (typically files with the .xml extension) and
then storing those components in a data structure for
manipulation

» An XML document can reference a Document Type Definition
(ItDTD% or schema that defines the document’s proper
structure

» An XML document that conforms to a DTD/schema (i.e., has
the appropriate structure) is valid

» If an XML parser (validatinlg or non-validating) can process an
%(ML ddocument successfully, that XML document is well-
orme

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<?xml version = "1.0"?>

<!-- Fig. 15.1: player.xml -->
<!-- Baseball player structured with XML -->
<player>
<firstName>John</firstName>
<lastName>Doe</lastName>
<battingAverage>0.375</battingAverage>
</player>

OVoOoO~NOTNDE WN =—

Fig. 15.1 | XML that describes a baseball player’s information.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 15.1

DTDs and schemas are essential for business-to-
business (B2B) transactions and mission-critical
systems. Validating XML documents ensures that
disparate systems can manipulate data structured in
standardized ways and prevents errors caused by missing
or malformed data.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A
v

15.3 Structuring Data

» An XML document begins with an optional XML declaration,
which identifies the document as an XML document. The

version attribute specifies the version of XML syntax used in
the document.

» XML comments begin with <!-- and end with -->

» An XML document contains text that represents its content
(i.e., data) and elements that specify its structure. XML
documents delimit an element with start and end tags

» The root element of an XML document encompasses all its
other elements

» XML element names can be of any length and can contain

letters, digits, underscores, hyphens and periods

= Must begin with either a letter or an underscore, and they should not begin with

“xm1” in any combination of uppercase and lowercase letters, as this is reserved for
use in the XML standards

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<

v

15.3 Structuring Data (Cont.)

» When a user loads an XML document in a browser,
a parser parses the document, and the browser
uses a style sheet to format the data for display

» Google Chrome places a down arrow and right

arrow next to every container element; they're not
part of the XML document.

= down arrow indicates that the browser is displaying the
container element’s child elements

= clicking the right arrow next to an element expands that
element

©1992-2012 by Pearson Education, Inc.
All Rights Reserved. 9

I <?xml version = "1.0"?>

2

3 «!-- Fig. 15.2: article.xml -->

4 <!-- Article structured with XML -->

5 <article>

6 <title>Simple XML</title>

7 <date>July 4, 2007</date>

8 <author>

9 <firstName>John</firstName>

10 <lastName>Doe</1astName>

11 </author>

12 <summary>XML 1s pretty easy.</summary>
13 <content>This chapter presents examples that use XML.</content>

14 </article>

Fig. 15.2 | XML used to mark up an article.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

10

Portability Tip 15.1

”

Documents should include the XML declaration to
identify the version of XML used. A document that lacks
an XML declaration might be assumed to conform to the
latest version of XML—when i1t does not, errors could
result.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 11

Common Programming Error 15.1

Placing any characters, including white space, before the
XML declaration is an error.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

12

Common Programming Error 15.2

In an XML document, each start tag must have a
matching end tag; omitting either tag is an error. Soon,
you’ll learn how such errors are detected.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

13

Common Programming Error 15.3

XML 1s case sensitive. Using different cases for the start-
tag and end-tag names for the same element is a syntax

CITOT.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

14

Common Programming Error 15.4

Using a white-space character in an XML element name
1S an error.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

15

Good Programming Practice 15.1

XML element names should be meaningful to humans
and should not use abbreviations.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

16

Common Programming Error 15.5

Nesting XML tags improperly is a syntax error. For
example, <x><y>hello</x></y> is an error, because
the </y> tag must precede the </x> tag.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

17

a) article.xml with all elements expanded

CDankhmml X

- C | © filey//C:/books/2011/W3HTPS/ 73 & @ = & & B A

-~

This XML file does not appear to have any style information associated with it. The =
document tree is shown below.
Down arrow <!'-- Fig. 15.2: article.xml --> E
\\\\\ <!-- Article structured with XML -->
[Ny <article>
<title>Simple XML</title>

<date>July 4, 2007</date>
Expanded v<author>

author <firstName>John</firstName>

<lastName>Doe</lastName>
element .
</author>

<summary>XML is pretty easy.</summary>

<content>This chapter presents examples that use XML.</content>
</farticle> o

< | 1 | 3

Fig. 15.3 | article.xml displayed in the Google Chrome
browser. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

b) article.xml with the author element collapsed

@ articlexml X

“ C O file///C:/books/2011/IW3HTPS/ ¥ | & B = & g B A
This XML file does not appear to have anv style information associated with it. The -
document tree is shown below.

<!—-— Fig. 15.2: article.xml -—->

<!-- Article structured with XML -->

R- ht o v<article>
ignt a % <title>Simple XML</title>

<date>July 4, 2007</date>
>Ea'.zt‘nor>. . .</author>
CO”EIDSEC[<summary>XML is pretty easy.</summary>
author‘ <content>This chapter presents examples that use XML.</content>
</article>
element <

b
m | 3

Fig. 15.3 | article.xm] displayed in the Google Chrome
browser. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17
18

Fig. 15.4 | Business letter marked up with XML. (Part | of 2.)

<?xml version = "1.0"?>

<!-- Fig. 15.4: letter.xml -->
<!-- Business letter marked up with XML -->
<!DOCTYPE Tetter SYSTEM "letter.dtd">

<letter>

<contact type = "sender'>
<name>Jane Doe</name>
<addressl>Box 12345</addressl>
<address2>15 Any Ave.</address2>
<city>0thertown</city>
<state>0Otherstate</state>
<zip>67890</zip>
<phone>555-4321</phone>
<flag gender = "F" />

</contact>

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

20

19 <contact type = "receiver'>

20 <name>John Doe</name>

21 <address1>123 Main St.</addressl>

22 <address2></address2>

23 <city>Anytown</city>

24 <state>Anystate</state>

25 <zip>12345</zip>

26 <phone>555-1234</phone>

27 <flag gender = "M" />

28 </contact>

29

30 <salutation>Dear Sir:</salutation>

31

32 <paragraph>It is our privilege to inform you about our new database
33 managed with XML. This new system allows you to reduce the

34 load on your inventory list server by having the client machine
35 perform the work of sorting and filtering the data.

36 </paragraph>

37

38 <paragraph>Please visit our website for availability and pricing.
39 </paragraph>

40

41 <closing>Sincerely, </closing>

42 <signature>Ms. Jane Doe</signature>

43 </letter>

Fig. 15.4 | Business letter marked up with XML. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 21

Error-Prevention Tip 15.1

An XML document is not required to reference a DTD,
but validating XML parsers can use a DTD to ensure that

the document has the proper structure.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

22

&

Portability Tip 15.2

Validating an XML document helps guarantee that
independent developers will exchange data in a
standardized form that conforms to the DTD.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

23

Common Programming Error 15.6

Failure to enclose attribute values in double ("") or

single (" ') quotes is a syntax error.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

24

15.4 Namespaces

XML namespaces provide a means for document authors to
prevent naming collisions

Each namespace prefix is bound to a uniform resource

identifier (URI) that uniquely identifies the namespace
= A URI is a series of characters that differentiate names
= Document authors create their own namespace prefixes

= Any name can be used as a namespace prefix, but the namespace prefix xm1 is
reserved for use in XML standards

To eliminate the need to place a namespace prefix in each
element, authors can specify a default namespace for an
element and its children

= We declare a default namespace using keyword xm1ns with a URI (Uniform Resource
Identifier) as its value

Document authors commonly use URLs (Uniform Resource

Locators) for URIs, because domain names (e.g., deitel.com)
in URLs must be unique

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

(A
v

25

Common Programming Error 15.7

Attempting to create a namespace prefix named xm1 in
any mixture of uppercase and lowercase letters is a
syntax error—the xm1 namespace prefix is reserved for
internal use by XML itself.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

26

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17

<?xml version = "1.0"?>

<!-- Fig. 15.5: namespace.xml -->

<!-- Demonstrating namespaces -->

<text:directory
xmIns:text = "urn:deitel:textInfo"”
xmins:image = "urn:deitel:imagelnfo">
<text:file filename = "book.xml">

<text:description>A book Tist</text:description>
</text:file>

<image:file filename = "funny.jpg">
<image:description>A funny picture</image:description>
<image:size width = 200" height = "100" />
</image: file>
</text:directory>

Fig. 15.5 | XML namespaces demonstration.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

27

|
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

<?xml version = "1.0"?>

<!-- Fig. 15.6: defaultnamespace.xml -->

<!-- Using default namespaces -->

<directory xmlns = "urn:deitel:textInfo"
xmlns:image = "urn:deitel:imagelnfo”>

<file filename = "book.xml">
<description>A book list</description>
</file>

<image:file filename = "funny.jpg">
<image:description>A funny picture</image:description>
<image:size width = "200" height = "100" />
</image: file>
</directory>

Fig. 15.6 | Default namespace demonstration.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

28

<

15.5 Document Type Definitions (DTDs)

» DTDs anca
types anc
another

» DTDs anda

schemas specify documents’ element
attributes, and their relationships to one

schemas enable an XML parser to verify

whether an XML document is valid (i.e., its
elements contain the proper attributes and appear
in the proper sequence)

» A DTD expresses the set of rules for document
structure using an EBNF (Extended Backus—-Naur
Form) grammar

» Ina DTD, an ELEMENT element type declaration
defines the rules for an element. An ATTLIST
attribute-list declaration defines attributes for a
particular element

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

29

Software Engineering Observation 15.2

XML documents can have many different structures, and
for this reason an application cannot be certain whether
a particular document it receives 1s complete, ordered
properly, and not missing data. DTDs and schemas
(Section 15.6) solve this problem by providing an
extensible way to describe XML document structure.
Applications should use DTDs or schemas to confirm
whether XML documents are valid.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

30

Software Engineering Observation 15.3

Many organizations and individuals are creating DTDs
and schemas for a broad range of applications. These
collections—called —are available free for
download from the web (e.g., www.xml.org,

Www .0as1S-open.org).

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

31

I <!-- Fig. 15.7: letter.dtd -—>

2 <!-- DTD document for letter.xml -->

3

4 <!ELEMENT Tetter (contact+, salutation, paragraph+,

5 closing, signature)>

6

7 <!ELEMENT contact (name, addressl, address2, city, state,
8 zip, phone, flag)>

9 <!ATTLIST contact type CDATA #IMPLIED>

10

I1 <!ELEMENT name (#PCDATA)>

12 <!ELEMENT addressl (#PCDATA)>
I3 <!ELEMENT address2 (#PCDATA)>
14 <!ELEMENT city (#PCDATA)>

I5 <!ELEMENT state (#PCDATA)>

16 <!ELEMENT zip (#PCDATA)>

17 <!ELEMENT phone (#PCDATA)>

I8 <!ELEMENT flag EMPTY>

19 <!ATTLIST flag gender (M | F) "M">
20

21 <!ELEMENT salutation (#PCDATA)>
22 <!ELEMENT closing (#PCDATA)>

23 <!ELEMENT paragraph (#PCDATA)>
24 <!'ELEMENT signature (#PCDATA)>

Fig. 15.7 | Document Type Definition (DTD) for a business letter.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Common Programming Error 15.8

For documents validated with DTDs, any document that
uses elements, attributes or nesting relationships not
explicitly defined by a DTD i1s an invalid document.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

33

Software Engineering Observation 15.4

DTD syntax cannot describe an element’s or attribute’s
data type. For example, a DTD cannot specify that a
particular element or attribute can contain only integer
data.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

34

Common Programming Error 15.9

Using markup characters (e.g., <, > and &) in parsed
character data is an error. Use character entity references
(e.g., &1t;, > and & ;) instead.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

35

<

15.6 W3C XML Schema Documents

Unlike DTDs

= Schemas use use XML syntax not EBNF grammar

= XML Schema documents can specify what type of data (e.g., numeric, text) an element
can contain

An XML document that conforms to a schema document is
schema valid

Two categories of types exist in XML Schema: simple types

and complex types
= Simple types cannot contain attributes or child elements; complex types can

Every simple type defines a restriction on an XML Schema-
defined schema type or on a user-defined type

Complex types can have either simple content or complex
content

= Both can contain attributes, but only complex content can contain child elements
Whereas complex types with simple content must extend or
restrict some other existing type, complex types with
complex content do not have this limitation

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

36

“In XML Validation: XML Validz »
& C | © www.xmlvalidation.com/index.php?id=1&1=0 wolh= & QE A

| XML Validation -

Validate an XML file

Read here how to validate your XML files (including referenced DTDs) online with just a few
mouse clicks.

An error has been found!

m

Click on *@ to jump to the error. In the document, you can point at @ with your mouse to

see the error message.

Errors in the XML document:

= 16: 14 The content of element type “"contact” must match
(name,address1,address2,city,state,zip,phone,flag)”. i

XML document:
1 <?xml version = "1.0"?>
2 <!-- Fig. 15.8: letter2.xml -
3 <!-- Business letter formatted with XML -->
4
5 <IDOCTYPE letter SYSTEM “letter.dtd”>
6
7 <letter>
8 <contact type = "sender">
9 <address1>Box 12345</address1>
10 <address2>15 Any Ave.</address2>
11 <city>0thertown</city>
12 <state»Otherstate</state>
13 <zip>67890</zip>
14 <phone>555-4321</phone>
15 <flag gender = "F" />
16 </contact>2

< | 1] ’

Fig. 15.8 | Error message when validating Tetter.xm1 with a
missing contact name.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17
18
19
20
21

<?xml version = "1.0"?>

<!-- Fig. 15.9: book.xml -->
<!-- Book 1ist marked up as XML -->
<deitel :books xmlns:deitel = "http://www.deitel.com/booklist">
<book>
<title>Visual Basic 2010 How to Program</title>
</book>
<book>
<title>Visual C# 2010 How to Program, 4/e</title>
</book>
<book>
<title>Java How to Program, 9/e</title>
</book>
<book>
<title>C++ How to Program, 8/e</title>
</book>
<book>
<title>Internet and World Wide Web How to Program, 5/e</title>
</book>
</deitel :books>

Fig. 15.9 | Schema-valid XML document describing a list of books.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

38

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17
18
19
20
21
22
23

<?xml version = "1.0"?>

<!-- Fig. 15.10: book.xsd -=>
<!-- Simple W3C XML Schema document -->
<schema xmlns = "http://waww.w3.0rg/2001/XMLSchema”

xmins:deitel = "http://www.deitel.com/booklist"
targetNamespace = "http://www.deitel.com/booklist">
<element name = "books" type = "deitel :BooksType"/>
<complexType name = "BooksType''>
<sequence>
<element name = "book” type = "deitel:SingleBookType"
minOccurs = "1" maxOccurs = "unbounded"/>
</sequence>
</complexType>
<complexType name = "SingleBookType">
<sequence>
<element name = "title” type = "string"/>
</sequence>
</complexType
</schema>

Fig. 15.10 | XML Schema document for book.xm1. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

39

() Schema validation report fo »

& C © www.w3.0org/2001/03/webdata/ vg¢ & @ &

Schema validating with XSV 3.1-1 of 2007/12/11 16:20:05

® Target: file:/usr/local/XSV/xsvlog/tmpZkQFYouploaded
(Real name: book xsd)

docElt: {nttp://www.w3.0rg/2001/XMLSchema} schema

Validation was strict, starting with type [Anonymous]

The schema(s) used for schema-validation had no errors

No schema-validity problems were found in the target

*® & o @

Y- Y

-~

m

Fig. 15.10 | XML Schema document for book .xm1. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

40

”

Portability Tip 15.3

W3C XML Schema authors specify URI http://
www.w3.0rg/2001/XMLSchema when referring to the
XML Schema namespace. This namespace contains
predefined elements that comprise the XML Schema
vocabulary. Specifying this URI ensures that validation
tools correctly identify XML Schema elements and do
not confuse them with those defined by document
authors.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 41

string
boolean

decimal

float

double

Description

A character string

True or false

A decimal

numeral

A floating-point
number

A floating-point
number

Range or structure

true, false

i * (10"), where i is an integer and
n is an integer that’s less than or
equal to zero.

m * (2¢), where m is an integer
whose absolute value is less than
224 and e is an integer in the range
-149 to 104. Plus three additional
numbers: positive infinity, negative
infinity and not-a-number (NaN).

m * (2¢), where m is an integer
whose absolute value is less than
253 and e is an integer in the range
-1075 to 970. Plus three additional
numbers: positive infinity, nega-
tive infinity and not-a-number
(NaN).

Fig. 15.11 | Some XML Schema types. (Part | of 2.)

Examples

"hello"
true

5,-12,-45.78

0, 12, -109.375,
NaN

0,12, -109.375,
NaN

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

42

Description
long A whole number
int A whole number
short A whole number
date A date consisting

of a year, month

and day
time A time consisting

of hours, minutes
and seconds

Range or structure Examples
-9223372036854775808 to 1234567890,
9223372036854775807, inclusive. -1234567890

-2147483648 to 2147483647, inclu- 1234567890,

sive. -1234567890
-32768 to 32767, inclusive. 12, -345
yyyy-mm with an optional dd and 2005-05-10

an optional time zone, where yyyy

is four digits long and mm and dd

are two digits long.

hh:mm:ss with an optional time 16:30:25-05:00

zone, where hh, mm and ss are two

digits long.

Fig. 15.11 | Some XML Schema types. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

43

I <?xml version = "1.0"?>

2 <!-- Fig. 15.12: computer.xsd -->

3 <!-- W3C XML Schema document -->

4

5 <schema xmlns = "http://www.w3.0rg/2001/XMLSchema”

6 xmins:computer = "http://www.deitel.com/computer”
7 targetNamespace = "http://www.deitel.com/computer'>
8

9 <simpleType name = "gigahertz'>

10 <restriction base = "decimal’>

11 <minInclusive value = "2.1"/>

12 </restriction>

13 </simpleType>

14

15 <complexType name = "CPU">

16 <simpleContent>

17 <extension base = "string'>

18 <attribute name = "model” type = "string'/>
19 </extension>
20 </simpleContent>
21 </complexType>
22

Fig. 15.12 | XML Schema document defining simple and complex
types. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

23
24
25
26
27
28
29
30
31
32
33
34

<complexType name = "portable’>
<all>
<element name = "processor’ type = "computer:CPU"/>
<element name = "monitor” type = "int"/>

<element name
<element name

"CPUSpeed" type = "computer:gigahertz"/>
"RAM" type = "int"/>

</all>
<attribute name = "manufacturer” type = "string"/>
</complexType>
<element name = "laptop” type = "computer:portable”/>
</schema>

Fig. 15.12 | XML Schema document defining simple and complex
types. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

45

<?xml version = "1.0"?>

<!-- Fig. 15.13: laptop.xml -—>

<!-- Laptop components marked up as XML -->

<computer:laptop xmlns:computer = "http://www.deitel.com/computer"”
manufacturer = "IBM">

<processor model = "Centrino”>Intel</processor>
<monitor>17</monitor>
<CPUSpeed>2.4</CPUSpeed>
<RAM>256</RAM>
</computer:laptop>

SOQﬂGMAUN—

12

Fig. 15.13 | XML document using the Taptop element defined in
computer.xsd.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

46

15.7 XML Vocabularies

» Some XML vocabularies

= MathML (Mathematical Markup Language)
Scalable Vector Graphics (SVG)

Wireless Markup Language (WML)

Extensible Business Reporting Language (XBRL)
Extensible User Interface Language (XUL)
Product Data Markup Language (PDML)

W3C XML Schema

Extensible Stylesheet Language (XSL)

» MathML markup describes mathematical

expressions for display
= Divided into two types of markup—content markup and presentation
markup

= Content MathML allows programmers to write mathematical notation
specific to different areas of mathematics

= Presentation MathML is directed toward formatting and displaying
mathematical notation

= By convention, MathML files end with the .mm1 filename extension

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

(A

v

47

15.7 XML Vocabularies (Cont.)

MathML document root node is the math element
= Default namespace is http:// www.w3.0rg/1998/Math/MathmMmL

mn element
= marks up a number

mo element
= marks up an operator

Entity reference ⁢
= indicates a multiplication operation without explicit symbolic representation

msup element

= represents a superscript

= has two children—the expression to be superscripted (i.e., the base) and the
superscript (i.e., the exponent)

= Correspondingly, the msub element represents a subscript
To display variables, use identifier element m1i

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

(A

v

48

15.7 XML Vocabularies (Cont.)

» mfrac element
= displays a fraction

(A

= If either the numerator or the denominator contains more than one element, it must

appear in an mrow element

» mrow element
= groups elements that are positioned horizontally in an expression

» Entity reference ∫
= represents the integral symbol

» msubsup element
= specifies the subscript and superscript of a symbol

= Requires three child elements—an operator, the subscript expression and the
superscript expression

» msqrt element
= represents a square-root expression

» Entity reference δ
= represents a lowercase delta symbol

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

49

I <?xml version="1.0" encoding="150-8859-1"?>

2 <!DOCTYPE math PUBLIC "-//W3C//DTD MathML 2.0//EN"

3 "http://www.w3.0org/TR/MathML2/dtd/mathml2.dtd">

4

5 <!-- Fig. 15.14: mathmll.mml -->

6 <!-- MathML equation. -->

7 <math xmlns="http://www.w3.0org/1998/Math/MathML">

8 <mn>2</mn>

9 <mo>+</mo>

10 <mn>3</mn>

11 <mo>=</mo>

12 <mn>5</mn>

13 </math>
e
[_%;] U file:///C:/books/..15_14/mathmlil.mml X 4

e E " -) . -

=D ’ L] file///¢ C'. | Cougp| 1 E
2+3 =05

Fig. 15.14 | Expression marked up with MathML and displayed in the
Firefox browser.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

50

I <?xml version="1.0" encoding="150-8859-1"?>

2 <!DOCTYPE math PUBLIC "-//W3C//DTD MathML 2.0//EN"
3 "http://www.w3.0org/TR/MathML2/dtd/mathm12.dtd">
4

5 <!-- Fig. 15.15: mathml2.htm]l -->

6 <!-- MathML algebraic equation. -->

7 <math xmlns="http://www.w3.0rg/1998/Math/MathML">
8 <mn>3</mn>

9 <mo>⁢</mo>

10 <msup>

11 <mi>x</mi>

12 <mn>2</mn>

13 </msup>

14 <mo>+</mo>

15 <mn>x</mn>

16 <mo>−</mo>

17 <mfrac>

I8 <mn>2</mn>

19 <mi>x</mi>
20 </mfrac>
21 <mo>=</mo>
22 <mn>0</mn>
23 </math>

Fig. 15.15 | Algebraic equation marked up with MathML and
displayed in the Firefox browser. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

-

I % l D file:///C:/books/..15_15/mathml2.mml x . =
€D | Ll filesse s - C'_ 7':'»'* Googpl 1 B-
3x2+x-2=-0

Fig. 15.15 | Algebraic equation marked up with MathML and
displayed in the Firefox browser. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

52

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17

<?xml version="1.0" encoding="1s0-8859-1"7>
<!DOCTYPE math PUBLIC "-//W3C//DTD MathML 2.0//EN"
"http://www.w3.0org/TR/MathML2/dtd/mathm]2.dtd">

<!-- Fig. 15.16 mathm13.htm]l -->
<!-- Calculus example using MathML -->
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<mrow>
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mn>1l</mn>
<mo>− </mo>
<mi>y</mi>
</mrow>
</msubsup>

Fig. 15.16 | Calculus expression marked up with MathML and
displayed in the Firefox browser. (Part | of 3.)

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

53

18
19
20
21
22
23
24
25
26
27
28
29
30
31

<msqrt>
<mn>4</mn>
<mo>⁢</mo>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
<mo>+</mo>
<mi>y</mi>
</msqrt>
<mo>δ </mo>
<mi>x</mi>
</mrow>
</math>

Fig. 15.16 | Calculus expression marked up with MathML and
displayed in the Firefox browser. (Part 2 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

54

[=) =
| & l || files///C:/books/...15_16/mathmi3.mml X I + ~

€)2 | ey - |- Gog P | A B
Integral N N e
symbol Jo “Vax +y6|x
Delta symbol

Fig. 15.16 | Calculus expression marked up with MathML and
displayed in the Firefox browser. (Part 3 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Markup language Description

Chemical Markup Lan- Chemical Markup Language (CML) is an XML vocabulary for

guage (CML) representing molecular and chemical information. Many previ-
ous methods for storing this type of information (e.g., special
file types) inhibited document reuse. CML takes advantage of
XML portability to enable document authors to use and reuse
molecular information without corrupting important data in the
process.

VoiceXML™ The VoiceXML Forum founded by AT&T, IBM, Lucent and
Motorola developed VoiceXML. It provides interactive voice
communication between humans and computers through a tele-
phone, PDA (personal digital assistant) or desktop computer.
IBM’s VoiceXML SDK can process VoiceXML documents. Visit

www . voicexml.org for more information on VoiceXML.

Synchronous Multime- SMIL is an XML vocabulary for multimedia presentations. The

dia Integration Language =~ W3C was the primary developer of SMIL, with contributions

(SMILT™) from some companies. Visit waw.w3.org/AudioVideo for more
on SMIL.

Fig. 15.17 | Various markup languages derived from XML. (Part |
of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

56

Markup language Description

Research Information RIXML, developed by a consortium of brokerage firms, marks

Exchange Markup Lan- up investment data. Visit www. rixm1.org for more information

guage (RIXML) on RIXML.

Geography Markup Lan- OpenGIS developed the Geography Markup Language to

guage (GML) describe geographic information. Visit www.opengis.org for
more information on GML.

Extensible User Interface The Mozilla Project created the Extensible User Interface Lan-

Language (XUL) guage for describing graphical user interfaces in a platform-inde-
pendent way.

Fig. 15.17 | Various markup languages derived from XML. (Part 2
of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

57

15.8 Extensible Stylehsheet Language
and XSL Transformations

» Convert XML into any text-based document
» XSL documents have the extension .xs]
» XPath

= A string-based Ian?uage of exdpressions used by XML and many of its related
technologies for effectively and efficiently locating structures and data (such as
specific elements and attributes) in XML documents

= Used to locate parts of the source-tree document that match templates defined in an
XSL style sheet. When a match occurs (i.e., a node matches a template), the matching

template executes and adds its result to the result tree. When there are no more
matches, XSLT has transformed the source tree into the result tree.

» XSLT does not analyze every node of the source tree
= it selectively navigates the source tree using XPath’s select and match attributes

» For XSLT to function, the source tree must be properly
structured

= Schemas, DTDs and validating parsers can validate document structure before using

XPath and XSLTs
» XSL style sheets can be connected directly to an XML

document by adding an xml:stylesheet processing
instruction to the XML document

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

58

15.8 Extensible Stylehsheet Language
and XSL Transformations (Cont.)

» Two tree structures are involved in transforming an XML
document using XSLT
= source tree (the document being transformed)
= result tree (the result of the transformation)
» XPath character / (a forward slash)
= Selects the document root

= |n XPath, a leading forward slash specifies that we are using absolute addressing
= An XPath expression with no beginning forward slash uses relative addressing

» XSL element value-of
= Retrieves an attribute’s value
= The @ symbol specifies an attribute node

» XSL node-set function name
= Retrieves the current node’s element name

» XSL node-set function text
= Retrieves the text between an element’s start and end tags

» The XPath expression //*

= Selects all the nodes in an XML document

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

59

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17
18
19
20
21
22
23

<?xml version = "“1.0"?>
<?xml-stylesheet type = "text/xsl" href = "sports.xs1"?>

<!-- Fig. 15.18: sports.xml -->
<!-- Sports Database -->

<sports>
<game id = "783">
<name>Cricket</name>

<paragraph>
More popular among commonwealth nations.
</paragraph>
</game>

<game id = "239">
<name>Baseball</name>

<paragraph>
More popular 1in America.
</paragraph>
</game>

Fig. 15.18 | XML document that describes various sports. (Part | of

2)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

60

24
25
26
27
28
29
30
31

<game -id

= |l418|l>

<name>Soccer (Futbol)</name>

<paragraph>
Most popular sport in the world.
</paragraph>

</game>
</sports>

=

C ® testdeitel.com/iw3htp5/ch15/Figl5_18-19/sportsxml 9% | N

Information about various sports

Sport

Information

783

Cricket

More popular among commonwealth nations.

239

Baseball

More popular in America.

418

Soccer (Futbol)

Most popular sport in the world.

Fig. 15.18 | XML document that describes various sports. (Part 2 of
2.)

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

61

Software Engineering Observation 15.5

XSL enables document authors to separate data
presentation (specified in XSL documents) from data
description (specified in XML documents).

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

62

ﬁ Common Programming Error 15.10

You’ll sometimes see the XML processing instruction
<?xml-stylesheet?> written as

<?xml :stylesheet?> with a colon rather than a dash.
The version with a colon results in an XML parsing error
in Firefox.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 63

I <?xml version = "1.0"?>

2 <!-- Fig. 15.19: sports.xsl -->

3 <!-- A simple XSLT transformation -->

4

5 <!-- reference XSL style sheet URI -->

6 <xsl-stylesheet version = "1.0"

7 xmIns:xs1 = "http://www.w3.0rg/1999/XSL/Transform">

8

9 <xs1:output method = "html" doctype-system = "about:legacy-compat” />
10 <xs1:template match = "/"> <!-- match root element -->

11

12 <html xmlns = "http://www.w3.0rg/1999/xhtml">

13 <head>

14 <meta charset = "utf-8"/>

15 <link rel = "stylesheet” type = "text/css" href = "style.css"/>
16 <title>Sports</title>

17 </head>

I8

19 <body>
20 <table>
21 <caption>Information about various sports</caption>
22 <thead>
23 <tr>

Fig. 15.19 | XSLT that creates elements and
document. (Part | of 2.)

attributes in an HTMLS5

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

64

24 <th>ID</th>

25 <th>Sport</th>

26 <th>Information</th>

27 </tr>

28 </thead>

29

30 <!-- 1insert each name and paragraph element value -->
31 <!-- 1into a table row. -->

32 <xs1:for-each select = "/sports/game">

33 <tr>

34 <td><xs1:value-of select = "@id"/></td>

35 <td><xs1:value-of select = "name"/></td>

36 <td><xs1:value-of select = "paragraph'/></td>
37 </tr>

38 </xs1: for-each>

39 </table>

40 </body>

41 </html>

42

43 </xsl:template>

44 </xsl:stylesheet>

Fig. 15.19 | XSLT that creates elements and attributes in an HTMLS
document. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

65

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17
18
19
20

<?xml version = "1.0"?>
<?xml-stylesheet type = "text/xsl" href = "sorting.xs1"?>

<!-- Fig. 15.20: sorting.xml -->

<!-- XML document containing book information -->

<book 1isbn = "999-99999-9-X">
<title>Deitel's XML Primer</title>

<author>
<firstName>Jane</firstName>
<lastName>Blue</lastName>
</author>

<chapters>
<frontMatter>
<preface pages = "2" />
<contents pages = "5" />
<illustrations pages = "4" />
</frontMatter>

Fig. 15.20 | XML document containing book information. (Part | of
2))

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

66

21 <chapter number = "3" pages = "44">Advanced XML</chapter>

22 <chapter number = "2" pages = "35">Intermediate XML</chapter>

23 <appendix number = "B" pages = "26">Parsers and Tools</appendix>
24 <appendix number = "A" pages = "7">Entities</appendix>

25 <chapter number = "1" pages = "28">XML Fundamentals</chapter>

26 </chapters>

27

28 <media type = "CD" />

29 </book>

Fig. 15.20 | XML document containing book information. (Part 2 of
2)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17

<?xml version = "1.0"?>

<!-- Fig. 15.21: sorting.xsl -->

<!-- Transformation of book information into HTMLS5 -->

<xsl:stylesheet version = "1.0"

xmIns:xs1 = "http://www.w3.0rg/1999/XSL/Transform">

<!l-- write XML declaration and DOCTYPE DTD information -->
<xs1:output method = "html" doctype-system = "about:legacy-compat” />

<!-- match document root -->
<xsl:template match = "/">
<html>
<xs1:apply-templates/>
</html>
</xs1:template>

Fig. 15.21 | XSL document that transforms sorting.xm1 into
HTMLS. (Part | of 5.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

68

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

<!-- match book -->
<xs1:template match = "book">
<head>
<meta charset = "utf-8"/>
<link rel = "stylesheet" type = "text/css" href = "style.css"/>
<title>ISBN <xsl1:value-of select = "@isbn"/> -
<xs1:value-of select = "title"/></title>
</head>
<body>
<hl><xs1:value-of select = "title"/></hl>
<h2>by

"author/lastName" />,
"author/firstName"/></h2>

<xs1:value-of select
<xs1:value-of select

<table>
<xs1:for-each select = 'chapters/frontMatter/*">
<tr>
<td>
<xs1:value-of select = "name()"/>
</td>

Fig. 15.21 | XSL document that transforms sorting.xm1 into
HTML5. (Part 2 of 5.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

69

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

<td>
(<xsl:value-of select = "@pages"/> pages)
</td>
</tr>
</xs1:for-each>

<xs1:for-each select = "chapters/chapter'>
<xsl:sort select = "@number” data-type = "number”
order = "ascending"/>
<tr>
<td>
Chapter <xsl:value-of select = "@number'/>
</td>
<td>
<xs1:value-of select = "text()"/>
(<xs1l:value-of select = "@pages'/> pages)
</td>
</tr>

</xs1:for-each>

Fig. 15.21 | XSL document that transforms sorting.xm1 into
HTMLS. (Part 3 of 5.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

70

62 <xs1:for-each select = "chapters/appendix">

63 <xsl:sort select = "@number” data-type = "text"”
64 order = "ascending"/>

65 <tr>

66 <td>

67 Appendix <xsl:value-of select = "@number"/>
68 </td>

69

70 <td>

71 <xs1:value-of select = "text()"/>

72 (<xs1:value-of select = "@pages'/> pages)
73 </td>

74 </tr>

75 </xs1:for-each>

76 </table>

77

78 <p>Pages:

79 <xsl:variable name = "pagecount”

80 select = "sum(chapters//*/@pages)"/>

8l <xs1:value-of select = "$pagecount”/>

82 <p>Media Type: <xsl:value-of select = "media/@type"/></p>
83 </body>

84 </xs1:template>

85 </xsl:stylesheet>

Fig. 15.21 | XSL document that transforms sorting.xm1 into
MLS. (Part 4 of 5.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

() ISBN 999-99999-9-X - Deite »

Deitel's XML Primer

by Blue, Jane

preface (2 pages)
contents (5 pages)
illustrations (4 pages)
Chapter 1 XML Fundamentals (28 pages)
Chapter 2 Intermediate XML (35 pages)
Chapter 3 Advanced XML (44 pages)
Appendix A Entities (7 pages)
Appendix B Parsers and Tools (26 pages)

Pages: 151

Media Type: CD

&~ C ® testdeitel.com/iw3htp5/ch15/Figl5_20-21/sorting.xml 5y | N\

-~

m

Fig. 15.21 | XSL document that transforms sorting.xm1 into

HTMLS. (Part 5 of 5.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

72

Element

<xs1:apply-templates>

<xs1:apply-templates
match = “expression">

<xs1:template>

<xsl:value-of select
"expression">

<xs1:for-each select
“expression">

<xsl:sort select =
"expression">

Description

Applies the templates of the XSL document to the children of
the current node.

Applies the templates of the XSL document to the children of
expression. The value of the attribute match (i.e., expression)
must be an XPath expression that specifies elements.

Contains rules to apply when a specified node is matched.

Selects the value of an XML element and adds it to the output
tree of the transformation. The required select attribute con-
tains an XPath expression.

Applies a template to every node selected by the XPath speci-
fied by the select attribute.

Used as a child element of an <xs1:apply-templates> or
<xs1:for-each> element. Sorts the nodes selected by the
<xs1:apply-template> or <xs1:for-each> element so that the
nodes are processed in sorted order.

Fig. 15.22 | XSL style-sheet elements. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

73

Element Description

<xs1:output> Has various attributes to define the format (e.g., XML), ver-
sion (e.g., 1.0, 2.0), document type and media type of the out-
put document. This tag is a top-level element—it can be used
only as a child element of an xm1:stylesheet.

<xs1:copy> Adds the current node to the output tree.

Fig. 15.22 | XSL style-sheet elements. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

74

15.9 Document Object Model

» Retrieving data from an XML document using

t

raditional sequential file processin

techniques is neither practical nor e%ficient

» Some XML parsers store document data as

t

ree structures in memory

This hierarchical tree structure is called a Document Object Model
(DOM) tree, and an XML parser that creates this type of structure
Is known as a DOM parser

Each element name is represented by a node
A node that contains other nodes is called a parent node

A parent node can have many children, but a child node can have
only one parent node

Nodes that are peers are called sibling nodes

A node’s descendant nodes include its children, its children’s
children and so on

A node’s ancestor nodes include its parent, its parent’s parent and
SO on

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

75

15.9 Document Object Model

<

(Cont.)

4

>

Many of the XML DOM capabilities are similar or identical to
those of the HTML DOM

The DOM tree has a single root node, which contains all the
other nodes in the document

XMLHttpRequest object
= can be used to load an XML document.

= Typically, such an object is used with Ajax to make asynchronous
requests to a server—the topic of the next chapter.

XMLHttpRequest object’s open method is used to create a
get request for an XML document at a specified URL.

The argument nul1 to the send method indicates that no
data is being sent to the server as part of this request.

nodeType property of a node
= contains the type of the node
Nonbreaking spaces ()

= spaces that the browser is not allowed to collapse or that can be used to keep
words together.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

76

15.9 Document Object Model
(Cont.)

>

nodeName property of a node
= Obtain the name of an element

childNodes list of a node
= Nonzero if the currrent node has children

nodevalue property
= Returns the value of an element

firstChild property of a node

= Refers to the first child of a given node

TastChild property of a node

= refers to the last child of a given node

nextSibling property of a node
= refers to the next sibling in a list of children of a particular node.

previousSibling property of a node
= refers to the current node’s previous sibling

parentNode property of a node
= refers to the current node’s parent node

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

(A

v

77

(A
v

15.9 Document Object Model
(Cont.)

» Use XPath expressions to specify search
criteria

» When the user clicks the Get Matches button,
the script applies the XPath expression to the
XML DOM and displays the matching nodes.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved. 78

root element { article
(—_— title
— date

children of the
article <

| > author — _ » firstName
root element sibling
elements
—_— summary L TastName
\ —= content

Fig. 15.23 | Tree structure for the document article.xm1 of
Fig. 15.2.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

79

I <!DOCTYPE html>

2

3 <«!-- Fig. 15.24: XMLDOMTraversal.html -->

4 <!-- Traversing an XML document using the XML DOM. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <link rel = "stylesheet” type = "text/css" href = "style.css">

9 <script src = "XMLDOMTraversal.js"></script>

10 <title>Traversing an XML document using the XML DOM</title>

I1 </head>

12 <body 1id = "body">

13 <form action = "#">

14 <input id = "firstChild” type = "button” value = "firstChild">
15 <input id = "nextSibling"” type = "button" value = "nextSibling"'>
16 <input 1id = "previousSibling” type = "button”

17 value = "previousSibling">

18 <input 1id = "lastChild"” type = "button” value = "lastChild">
19 <input 1id = "parentNode” type = "button” value = "parentNode'>
20 </form>
21 <div id = "outputDiv'></div>
22 </body>
23 </html>

Fig. 15.24 | Traversingan XML document using the XML DOM. (Part
of I1.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

80

() Traversing an XML docume

=

C @ testdeitel.com/iw3htp5/ch15/Figl5_ 24-2" v A

| firstChild | | nextSibling | | previousSibling | | lastChild | | parentNode |

Fig. 15.2: article.xml
Article structured with XML
article

title

Simple XML
date
July 4, 2007
author
firstName
John
TastName
Doe
summary
XML is pretty easy.
content
This chapter presents examples that use xmL.

a) Comment node at the
beginning of article.xml
is highlighted when the
XML document first loads

Fig. 15.24 | Traversingan XML document using the XML DOM. (Part
20fI11.)

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

81

b) User clicked the
@ Traversing an XML docume > nextSibling button

: - e o to highlight the
test.deitel.com/iw3htp5/ch15/Figl5 24-2F
£ C | ® testdeitel.com, ichilet bl w A second comment

node

| firstChild | [nextsmlinghl | previousSibling | | lastChild | | parentNode |

Fig. 15.2: article.xm]l
Article structured with XML
article
title
Simple XML
date
July 4, 2007
author
firstName
John
TastName
Doe
summary
XML s pretty easy.
content
This chapter presents examples that use XML.

Fig. 15.24 | Traversingan XML document using the XML DOM. (Part
3ofIl.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

c) User clicked the
® Traversing an XML docume > nextSibling button

i P again to highlight
test.deitel. fiw3htp5/chl5/Figl5 _24-2°
b C ® testdeitel.com/iw3htp5/ch15/Figl5_ w N the article node

| firstChild | [nextSibun% | previousSibling | | lastChild | | parentNode |

Fig. 15.2: article.xm]l
Article structured with XML
article
title
Simple XML
date
July 4, 2007
author
firstName
John
TastName
Doe
summary
XML is pretty easy.
content
This chapter presents examples that use XML.

Fig. 15.24 | Traversingan XML document using the XML DOM. (Part
4of 1))

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 83

d) User clicked the
@ Traversing an XML docume > firstChild button to

L C ® testdeitel.com/iw3htp5/chl15/Figl5_24-2"vg | N hlgh_hght the ,
article node’s
[ﬁrstChiI{hl [nextSibling | [previousSibling | [lastChild | [parentNode | title child node

Fig. 15.2: article.xml
Article structured with xML
article

title

July 4, 2007
author
firstName
John
lastName
Doe
summary
XML is pretty easy.
content
This chapter presents examples that use XML.

Fig. 15.24 | Traversing an XML document using the XML DOM. (Part
50f I1.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

e) User clicked the
() Traversing an XML docume » firstChild button

i o) again to highlight
\ . fiw3htp5/ {Fi 4-2: ,
4 C @ testdeitel.com/iw3htp5/ch15/Figl5_24-2 %% | N e title node’s

text child node

| firstChild | | nextSibling | | previousSibling | | lastChild | | parentNode |

Fig. 15.2: article.xm]l
Article structured with XML
article
title
Simple XML
date
July 4, 2007
author
firstName
John
lastName
Doe
summary
XML is pretty easy.
content
This chapter presents examples that use XML.

Fig. 15.24 | Traversing an XML document using the XML DOM. (Part
6of 1))

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

f) User clicked the
(©) Traversing an XML docume > parentNode button

i i e e aa e to highlight the text
&« test.deitel.com/iw3htp5/ch15/Figl5_24-2° ; .
C | © testdeitel.com/iw3htp5/ch15/Fig15. w A node’s parent title

(firstChild | [nextSibling | [previousSibling | [lastChild | [parentNodﬁ] node

Fig. 15.2: article.xm]
Article structured with XML
article
title
Simple XML
date
July 4, 2007
author
firstName
John
lastName
Doe
summary
XML is pretty easy.
content
This chapter presents examples that use XML.

Fig. 15.24 | Traversingan XML document using the XML DOM. (Part
7of 11.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

86

g) User clicked the

i A e aa o to highlight the
. l. JSiw3htp5/chl5/Figl5_24-2° ,
hm C ® testdeitel.com/iw3htp5/ch15/Figl5._. kAL § cit]e node’s date

sibling node

| firstChild | [nextSibliw | previousSibling | | lastChild | | parentNode |

Fig. 15.2: article.xml
Article structured with XML
article
title
Simple XML
date
July 4, 2007
author
firstName
John
lastName
Doe
summary
XML is pretty easy.
content
This chapter presents examples that use XmML.

Fig. 15.24 | Traversing an XML document using the XML DOM. (Part
8of Il.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

h) User clicked the
(©) Traversing an XML docume > nextSibling button

. . ./ W t z" ,:'/ | I 4_ P }
s c O st dEIte| com, Do/« I I (_:“ 5 * *

sibling node

| firstChild | | nextSibling | | previousSibling | | lastChild | | parentNode |

Fig. 15.2: article.xml
Article structured with xmL
article
title
Simple XML
date
July 4, 2007
author
firstName
John
TastName
Doe
summary
XML is pretty easy.
content
This chapter presents examples that use XML.

Fig. 15.24 | Traversingan XML document using the XML DOM. (Part
90of I1.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

i) User clicked the
(©) Traversing an XML docume lastChild button to

i . . : highlight the
test.deitel.com/iw2hip5/chl5/Figls_24-2¢ ,
& co ' R wi A author node’s last
[firstChild | [nextSibling | [previousSibling | [nastc:hiﬂj [parentNode | child node
(TastName)

Fig. 15.2: article.xm]
Article structured with XML
article
title
Simple XML
date
July 4, 2007
author
firstName
John
TastName
Doe
summary
XML is pretty easy.
content
This chapter presents examples that use XML.

Fig. 15.24 | Traversing an XML document using the XML DOM. (Part
10of 11.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

() Traversing an XML docume »

&« C ® testdeitel.com/iw3htp5/ch15/Figl5_24-2° %% N

[ﬁrstChild] [nextSibling] [previousSibling] [lastChild] [parentNode}:L

Fig. 15.2: article.xml
Article structured with xmL
article
title
Simple XML
date
July 4, 2007
author
firstName
John
TastName
Doe
summary
XML s pretty easy.
content
This chapter presents examples that use XML.

j) User clicked the
parentNode button
to highlight the
lastName node’s
author parent node

Fig. 15.24 | Traversingan XML document using the XML DOM. (Part
I1ofIl.)

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

90

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17
18
19
20
21
22
23

<!-- Fig. 15.25: XMLDOMTraversal.html -->

<!-- JavaScript for traversing an XML document using the XML DOM. -->
var outputHTML = ""; // stores text to output in outputDiv

var idCounter = 1; // used to create div IDs

var depth = -1; // tree depth is -1 to start

var current = null; // represents the current node for traversals
var previous = null; // represents prior node in traversals

// register event handlers for buttons and Toad XML document
function start()
{
document.getElementById("firstChild").addEventListener(
"click", processFirstChild, false);
document.getElementById("nextSibling”).addEventListener(
"click"™, processNextSibling, false);
document.getElementById("previousSibling”).addEventListener(
"click", processPreviousSibling, false);
document.getElementById("lastChild"”).addEventListener(
"click", processLastChild, false);
document.getElementById("parentNode"™).addEventListener(
"click", processParentNode, false);
ToadXMLDocument('article.xml')
} // end function start

Fig. 15.25 | JavaScript for traversing an XML document using the
XML DOM. (Part 1 of 10.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

91

24
25 // load XML document based on whether the browser is IE7 or Firefox 2
26 function loadXMLDocument(url)

27 {

28 var xmlHttpRequest = new XMLHttpRequest();

29 xmlHttpRequest.open("get™, url, false);

30 xmTHttpRequest.send(null);

31 var doc = xmlHttpRequest.responseXML;

32 buiTdHTML(doc.childNodes); // display the nodes

33 displayDoc(); // display the document and highlight current node
34 1} // end function loadXMLDocument

35

36 // traverse xmlDocument and build HTMLS5 representation of 1its content
37 function buildHTML(childList)

38 {

39 ++depth; // increase tab depth

40

41 // display each node's content

42 for (var i = 0; i < childList.Tlength; i++)
43 {

44 switch (childList[i].nodeType)

45 {

Fig. 15.25 | JavaScript for traversing an XML document using the
XML DOM. (Part 2 of 10.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

46 case 1: // Node.ELEMENT_NODE; value used for portability

47 outputHTML += "<div id=\"1d" + idCounter + "\'">";

48 spaceOutput(depth); // insert spaces

49 outputHTML += childList[i].nodeName; // show node's name
50 ++idCounter; // increment the id counter

51

52 // if current node has children, call buildHTML recursively
53 if (childList[i].childNodes.length != 0)

54 buildHTML(childList[i].childNodes);

55

56 outputHTML += "</div>";

57 break;

Fig. 15.25 | JavaScript for traversing an XML document using the
XML DOM. (Part 3 of 10.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

case 3: // Node.TEXT_NODE; value used for portability
case 8: // Node.COMMENT_NODE; value used for portability
// if nodeValue is not 3 or 6 spaces (Firefox issue),
// include nodeValue in HTML
if (childList[i].nodeValue.indexOf(" ") == -1 &&
childList[i].nodeValue.indexOf(" ") = -1)
{
outputHTML += "<div id=\"1d" + idCounter + "\">";
spaceOutput(depth); // insert spaces
outputHTML += childList[i].nodeValue + "</div>";
++idCounter; // increment the id counter
} // end if
} // end switch
} // end for

--depth; // decrease tab depth
} // end function buiTldHTML

Fig. 15.25 | JavaScript for traversing an XML document using the
XML DOM. (Part 4 of 10.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

94

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

// display the XML document and highlight the first child

function displayDoc()

{
document.getElementById("outputDiv").innerHTML = outputHTML;
current = document.getElementById('idl");
setCurrentNodeStyle(current.getAttribute("id"), true);

} // end function displayDoc

// insert nonbreaking spaces for indentation
function spaceOutput(number)

{

for (var i = 0; i < number; i++)

{
outputHTML += " :";
} // end for
} // end function spaceQutput

Fig. 15.25 | JavaScript for traversing an XML document using the
XML DOM. (Part 5 of 10.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

95

93 // highlight first child of current node
94 function processFirstChild(Q)

95 {

96 if (current.childNodes.length == 1 & & // only one child

97 current.firstChild.nodeType == 3) // and it's a text node
98 {

99 alert("There is no child node");

100 Y} // end if

101 else if (current.childNodes.length > 1)

102 {

103 previous = current; // save currently highlighted node

104

105 if (current.firstChild.nodeType != 3) // if not text node
106 current = current.firstChild; // get new current node

107 else // if text node, use firstChild's nextSibling instead
108 current = current.firstChild.nextSibling; // get first sibling
109

110 setCurrentNodeStyle(previous.getAttribute("id"), false);
11 setCurrentNodeStyle(current.getAttribute("id"), true);
112 } // end if

113 else

114 alert("There is no child node");

115 } // end function processFirstChild

Fig. 15.25 | JavaScript for traversing an XML document using the
XML DOM. (Part 6 of 10.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

116
117 // highlight next sibling of current node
118 function processNextSibling()

119 {

120 if (current.getAttribute("id") != "outputDiv" &&

121 current.nextSibling)

122 {

123 previous = current; // save currently highlighted node
124 current = current.nextSibling; // get new current node

125 setCurrentNodeStyle(previous.getAttribute("id"), false);
126 setCurrentNodeStyle(current.getAttribute("id"), true);
127 } // end if

128 else

129 alert("There is no next sibling");

130 } // end function processNextSibling

131

Fig. 15.25 | JavaScript for traversing an XML document using the
XML DOM. (Part 7 of 10.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

// highlight previous sibling of current node if it is not a text node
function processPreviousSibTing()
{
if (current.getAttribute("id") != "outputDiv" &&
current.previousSibling & current.previousSibling.nodeType != 3)
{
previous = current; // save currently highlighted node
current = current.previousSibling; // get new current node
setCurrentNodeStyle(previous.getAttribute("id"), false);
setCurrentNodeStyle(current.getAttribute("id"), true);
} // end if
else
alert("There is no previous sibling");
} // end function processPreviousSibling

Fig. 15.25 | JavaScript for traversing an XML document using the
XML DOM. (Part 8 of 10.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

98

147 // highlight last child of current node
148 function processLastChild()

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

{
if (current.childNodes.length == 1 &&
current.lastChild.nodeType == 3)

{
alert("There is no child node");

} // end if

else if (current.childNodes.length != 0)

{
previous = current; // save currently highlighted node
current = current.lastChild; // get new current node
setCurrentNodeStyle(previous.getAttribute("id"), false);
setCurrentNodeStyle(current.getAttribute("id"), true);

} // end if

else

alert("There 1is no child node");
} // end function processLastChild

Fig. 15.25 | JavaScript for traversing an XML document using the
XML DOM. (Part 9 of 10.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

99

166 // highlight parent of current node
167 function processParentNode()

168 {

169 if (current.parentNode.getAttribute("id") != "body")

170 {

171 previous = current; // save currently highlighted node

172 current = current.parentNode; // get new current node

173 setCurrentNodeStyle(previous.getAttribute("id"), false);
174 setCurrentNodeStyle(current.getAttribute("id"), true);
175 } // end if

176 else

177 alert("There is no parent node");

178 } // end function processParentNode

179

180 // set style of node with specified id
181 function setCurrentNodeStyle(1id, highlight)

182 {

183 document.getElementById(id).className =
184 (highlight ? "highlighted” : "");
185 } // end function setCurrentNodeStyle

186

187 window.addEventListener("load", start, false);

Fig. 15.25 | JavaScript for traversing an XML document using the
XML DOM. (Part 10 of 10.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Portability Tip 15.4

Firefox’s XML parser does not ignore white space used
for indentation in XML documents. Instead, it creates
text nodes containing the white-space characters.

©1992-2012 by Pearson Education, Inc. All 10
Rights Reserved. 1

Property/
Method

Description

nodeType
nodeName
nodeValue
parentNode
childNodes
firstChild
TastChild
previousSibling
nextSibling

attributes

An integer representing the node type.

The name of the node.

A string or null depending on the node type.

The parent node.

A NodeList (Fig. 15.27) with all the children of the node.
The first child in the Node’s NodeList.

The last child in the Node’s NodeList.

The node preceding this node; nu11 if there’s no such node.
The node following this node; nu11 if there’s no such node.

A collection of Attr objects (Fig. 15.30) containing the attributes for
this node.

Fig. 15.26 | Common Node properties and methods. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All 10
Rights Reserved. 2

Property/

Method Description

insertBefore Inserts the node (passed as the first argument) before the existing node
(passed as the second argument). If the new node is already in the tree,
it’s removed before insertion. The same behavior is true for other meth-

ods that add nodes.
replaceChild Replaces the second argument node with the first argument node.
removeChild Removes the child node passed to it.
appendChild Appends the node it receives to the list of child nodes.

Fig. 15.26 | Common Node properties and methods. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Property/

Method Description

item Method that receives an index number and returns the element node at
that index. Indices range from 0 to length — 1. You can also access the
nodes in a NodeList via array indexing,.

Tength The total number of nodes in the list.

Fig. 15.27 | NodeList property and method.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Property/Method

Description

documentETlement

createElement

createAttribute

createTextNode

getElementsByTagName

The root node of the document.

Creates and returns an element node with the specified tag
name.

Creates and returns an Attr node (Fig. 15.30) with the specified
name and value.

Creates and returns a text node that contains the specified text.

Returns a NodeList of all the nodes in the subtree with the name
specified as the first argument, ordered as they would be encoun-
tered in a preorder traversal. An optional second argument spec-
ifies either the direct child nodes (0) or any descendant (1).

Fig. 15.28 | Document property and methods.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Property/

Method Description

tagName The name of the element.

getAttribute Returns the value of the specified attribute.

setAttribute Changes the value of the attribute passed as the first argument to the
value passed as the second argument.

removeAttribute Removes the specified attribute.

getAttributeNode Returns the specified attribute node.

setAttributeNode Adds a new attribute node with the specified name.

Fig. 15.29 | Element property and methods.

©1992-2012 by Pearson Education, Inc. All 10
Rights Reserved. 6

Property Description

value The specified attribute’s value.

name The name of the attribute.

Fig. 15.30 | Attr properties.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Property Description

data The text contained in the node.

length The number of characters contained in the node.

Fig. 15.31 | Text properties.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

I <!DOCTYPE html>

2

3 «!-- Fig. 15.32: xpath.html -->

4 <!-- Using XPath to locate nodes in an XML document. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <link rel = "stylesheet” type = "text/css" href = "style.css">
9 <script src = "xpath.js"></script>

10 <title>Using XPath</title>
I1 </head>
12 <body id = "body">
13 <form id = "myForm" action = "#">
14 <input id = "inputField" type = "text">
15 <input 1id = "matchesButton” type = "button" value = "Get Matches">
16 </form>
17 <div 1id = "outputDiv'></div>
18 </body>
19 </html>

Fig. 15.32 | Using XPath to locate nodes in an XML document. (Part
| of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

a) Selecting the sports node b) Selecting the game nodes from the sports node

(©) Using XPath . (©) Using XPath X

&« C ® testdeitel.com/iw3htp5/ch15/Figl5_32- 5% A L C ©® testdeitel.com/iw3htp5/ch15/Figl5_32- 5% | X\
Isports Isportsigame]
Cricket More popular among commonwealth nations. cricket More popular among commonwealth nations.
Baseball More popular in America. Soccer (Futbol)
Most popular sport in the world. Baseball More popular in America.
Soccer (Futbol) Most popular sport in the world.

c) Selecting the name node from each game node d) Selecting the paragraph node from each game
Ll C | ® testdeitel.com/iw3htp5/ch15/Figl5_32- %% N\ b C | ® testdeitel.com/iw3htp5/ch15/Figl5_32- %% N\
/sports/game/name [Get Matchesiﬁ /sports/game/paragraph [Get Matchesig

cricket More popular among commonwealth nations.
Baseball More popular in America.
soccer (Futbol) Most popular sport in the world.

Fig. 15.32 | Using XPath to locate nodes in an XML document. (Part
2 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

e) Selecting the game with the id attribute value 239 f) Selecting the game with name element value Cricket

(©) Using XPath X (©) Using XPath ;

% C | ® testdeitel.com/iw3htp5/ch15/Figl5_32- v¢ N €« C | ® test.deitel.com/iw3htp5/ch15/Figl5_32- ¥% | N
[fspc»rtslgame [@id="239] | Get MalchesE 'Isportslgame [name="Cricket] WI Get Matches
Baseball More popular in america. cricket More popular among commonwealth nations.

Fig. 15.32 | Using XPath to locate nodes in an XML document. (Part
3 0of3))

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17
18
19
20
21
22

// Fig. 15.33: xpath.html

// JavaScript that uses XPath to locate nodes in an XML document.
var doc; // variable to reference the XML document

var outputHTML = ""; // stores text to output in outputDiv

// register event handler for button and load XML document
function start()
{
document.getElementById("matchesButton").addEventListener(
"click”™, processXPathExpression, false);
ToadXMLDocument(“sports.xml"™);
} // end function start

// load XML document programmatically
function loadXMLDocument(url)
{
var xmlHttpRequest = new XMLHttpRequest();
xmTHttpRequest.open("get", url, false);
xmlHttpRequest.send(null);
doc = xmlHttpRequest.responseXML;
} // end function loadXMLDocument

Fig. 15.33 | Using XPath to locate nodes in an XML document. (Part
| of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

23 // display the XML document
24 function displayHTMLQ)

25 {

26 document.getElementById("outputDiv").innerHTML = outputHTML;
27 } // end function displayDoc

28

29 // obtain and apply XPath expression
30 function processXPathExpression()

31 {

32 var xpathExpression = document.getElementById("inputField"”).value;
33 var result;

34 OUtputHTML = "";

35

36 if (!doc.evaluate) // Internet Explorer

37 {

38 result = doc.selectNodes(xpathExpression);

39

40 for (var i = 0; i < result.length; i++)

41 {

42 outputHTML += "<p>" + result.item(i).text + "</p>";
43 } // end for

44 } // end if

Fig. 15.33 | Using XPath to locate nodes in an XML document. (Part
2 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

45 else // other browsers

46 {

47 result = doc.evaluate(xpathExpression, doc, null,
48 XPathResult.ORDERED NODE_ITERATOR_TYPE, null);
49 var current = result.iterateNext();

50

51 while (current)

52 {

53 outputHTML += "<p>" + current.textContent + "</p>";
54 current = result.iterateNext();

55 } // end while

56 } // end else

57

58 dispTlayHTML(Q) ;

59 1} // end function processXPathExpression

60

61 window.addEventListener("load", start, false);

Fig. 15.33 | Using XPath to locate nodes in an XML document. (Part
3 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

<?xml version = "1.0"?>

<!-- Fig. 15.34: sports.xml -->
<!-- Sports Database -—>
<sports>
<game id = "783">
<name>Cricket</name>
<paragraph>

More popular among commonwealth nations.

</paragraph>

</game>

<game id = "239">
<name>Baseball</name>
<paragraph>

More popular in America.

</paragraph>

</game>

<game id = "418">
<name>Soccer (Futbol)</name>
<paragraph>

Most popular sport in the world.

</paragraph>
</game>
</sports>

Fig. 15.34 | XML document that describes various sports.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Expression Description

/sports Martches all sports nodes that are child nodes of
the document root node.

/sports/game Matches all game nodes that are child nodes of
sports, which is a child of the document root.

/sports/game/name Matches all name nodes that are child nodes of
game. The game is a child of sports, which is a
child of the document root.

/sports/game/paragraph Matches all paragraph nodes that are child nodes
of game. The game is a child of sports, which is a
child of the document root.

/sports/game [@id="239"] Matches the game node with the id number 239.
The game is a child of sports, which is a child of
the document root.

/sports/game [name='Cricket'] Matches all game nodes that contain a child ele-
ment whose name is Cricket. The game is a child
of sports, which is a child of the document root.

Fig. 15.35 | XPath expressions and descriptions.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

