Chapter 16
Ajax-Enabled Rich Internet
Applications with XML and

JSON

Internet & World Wide Web
How to Program, 5/e

OBJECTIVES

In this chapter you will:

m Learn what Ajax is and why it's important for building Rich Internet Applications.
m Use asynchronous requests to give web applications the feel of desktop applications.

m Use the XMLHttpRequest object to manage asynchronous requests to servers and to
receive asynchronous responses.

m Use XML with the DOM.

m Create a full-scale Ajax-enabled application.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

16.1

16.2
16.3
16.4

16.5

Introduction

16.1.1 Traditional Web Applications vs. Ajax Applications
16.1.2 Traditional Web Applications
16.1.3 Ajax Web Applications

Rich Internet Applications (RIAs) with Ajax
History of Ajax
“Raw” Ajax Example Using the XMLHttpRequest Object

16.4.1 Asynchronous Requests

16.4.2 Exception Handling
16.4.3 Callback Functions
16.4.4 XMLHttpRequest Object Event, Properties and Methods

Using XML and the DOM

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

16.6 Creating a Full-Scale Ajax-Enabled Application

16.6.1
16.6.2
16.6.3
16.6.4
16.6.5
16.6.6
16.6.7

Using JSON

Rich Functionality

Interacting with a Web Service on the Server

Parsing JSON Data

Creating HTML5 Elements and Setting Event Handlers on the Fly
Implementing Type-Ahead

Implementing a Form with Asynchronous Validation

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A

16.1 Introduction

Usability of web applications has lagged behind that of
desktop applications

Rich Internet Applications (RIAS)

= Web applications that approximate the look, feel and usability of desktop applications
= Two key attributes—performance and rich GUI

RIA performance

= Comes from Ajax (Asynchronous JavaScript and XML), which uses client-side scripting
to make web applications more responsive

Ajax applications separate client-side user interaction and
server communication, and run them in parallel, making the
delays of server-side processing more transparent to the user

“Raw” Ajax uses JavaScript to send asynchronous requests to
the server, then updates the page using the DOM

When writing “raw” Ajax you need to deal directly with cross-
browser portability issues, making it impractical for
developing large-scale applications

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

<

v

16.1 Introduction (Cont.)

» Portability issues

= Hidden by Ajax toolkits, such as jQuery, ASP.NET Ajax and JSF’s Ajax
capabilities, which provide powerful ready-to-use controls and functions
that enrich web applications and simplify JavaScript coding by making it
cross-browser compatible.

» Achieve rich GUI in RIAs with

= JavaScript toolkits, providing powerful ready-to-use controls and functions
that enrich web applications.

» Client-side of Ajax applications
= Written in HTML5 and CSS3
= Uses JavaScript to add functionality to the user interface

» XML and JSON are used to structure the data passed between
the server and the client

» XMLHttpRequest

= The Ajax component that manages interaction with the server
= Commonly abbreviated as XHR.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 6

(A

16.1.2 Traditional Web Applications

» Traditional web applications

= User fills in the form’s fields, then submits the form

= Browser generates a request to the server, which receives the request and
processes it

= Server generates and sends a response containing the exact page that the
browser will render

2 Elrowkser loads the new page and temporarily makes the browser window
an

= Client waits for the server to respond and reloads the entire page with the
data from the response

» While a synchronous request is being processed on
the server, the user cannot interact with the client
web browser

» The synchronous model was originally designed for

a web of hypertext documents

= some people called it the “brochure web”
= model yielded erratic application performance

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

2 6
E Process Generate Process Generate
- > =
3 request response request response
A
3 7
Page 2 Page 3
Form | —— form | —
Request | p— Request 2 —
A — | Form A — | Form
Page | Page Page 2 Page Page 3
2 < Form | — reloading Form | — reloading Form | —
(] (— p— P
O - - -
—— | Form —— | Form —5 —— | Form

Fig. 16.1 | Classic web application reloading the page for every
user interaction.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

<

16.1.3 Ajax Web Applications

» In an Ajax application, when the user interacts with
a page
= Client creates an XMLHttpRequest object to manage a request

= XMLHttpRequest object sends the request to and awaits the response
from the server

= Requests are asynchronous, allowing the user to continue interacting with
the application while the server processes the request concurrently

= When the server responds, the XMLHttpRequest object that issued the
request invokes a callback function, which typically uses partial page

updates to display the returned data in the existing web page without
reloading the entire page

» Callback function updates only a designated part of
the page
» Partial page updates help make web applications

more responsive, making them feel more like
desktop applications

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

E’ Process | Generate Process | Generate
g request | | | response request 2 | | response
Vo N
5 d#a déﬁa 7
2 . N . 4
User interaction initiates Partial
asynchronous request page update
) !
T T
Request object \ / K K
Callback function pl - I/ Page | 8/
= i Form | — Request object
.E’ Response processing I___ Update | — Update q) A
(w] — Callback function \
——| —| form [*{=—=I"] Response processing |
>
fr 6 ; 3
l T
1 1
Partial User interaction initiates
page update asynchronous request

Fig. 16.2 | Ajax-enabled web application interacting with the
server asynchronously.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

16.2 Rich Internet Applications (RIAs) —
with Ajax

» Classic HTML registration form

= Sends all of the data to be validated to the server when the user clicks the
Register button

= While the server is validating the data, the user cannot interact with the
page

= Server finds invalid data, generates a new page |dent|fy||%ﬁ the errors |n

the form and sends it back to the client—which renders the page in the
browser

= User fixes the errors and clicks the Register button again

= Cycle repeats until no errors are found, then the data is stored on the
server

Entire page reloads every time the user submits invalid data

b Ajax enabled forms are more interactive

0 'I[Eﬁtr%esléire validated individually, dynamically as the user enters data into
e fields

= If a problem is found, the server sends an error message that is
asynchronously displayed to inform the user of the problem

= Sending each entry asynchronously allows the user to address invalid
entries 8U|ck y, rather than makmg edits and resubmitting the entire form
repeatedly until all entries are vali

= Asynchronous requests could also be used to fill some fields based on
previous fields’ values (e.qg., city based on zip code)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

a) A sample registration
form in which the user
has not filled in the
required fields, but
attempts to submit the
form anyway by clicking
Register.

Sample Form

Registration Form
Please fill in all fields and click Register.

User Information

First name:
Last name:
Email:
Phone:
Publications
Which book would you like information about?
Internet and WWW How to Program IZI
Operating System
‘Which operating system do you use?
® Windows © Mac OS X © Limux © Other

€« C' | ® localhost/ch19/fig19_13-14/form.htm b S

Fig. 16.3 | Classic HTMLS form: The user submits the form to the
server, which validates the data (if any). Server responds indicating

ny fields with invalid or missing data. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

12

by Indlcatlng a” the form Sample Form

fields with missing or o C' | @ localhost/ch19/fig19_13-14/form.htm w oA

invalid data. The user

must correct the Registration Form

problems and resubmit
the entire form

Please fill in all fields and click Register.

repeatEdly until all errors User Information

are corrected.

First name:

Last name: |
Email-

Error message in red — Which book would you like information about?

Internet and WWW How to Program B
Operating System

Which operating system do you use?

@ Windows © Mac OS X © Linux © Other

First name is required
Last name is required

Email address is required

Fig. 16.3 | Classic HTMLS5 form: The user submits the form to the

server, which validates the data (if

re LI | .1 1 1

any)

. Server responds indicating

£ ™~ - - oo N

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

13

Sample Form X

&~ Cc QIocalhost_fchl@_ff.g19;13—14_fforfn,ht'm

Registration Form
Please fill in all fields and click Register.

User Information

First name: |gg|ly

Last name: |gjye

Phone: ‘

Publications
‘Which book would vou like information about?
Internet and WWW How to Program E
Operating System
‘Which operating system do you use?
©® Windows ' Mac OS X © Linux © Other

Register

Email: NotAValidEmail Enter a valid email address, e g., user@domain com

w oA

Fig. 16.4 | Ajax-enabled form shows errors
user moves to another field.

asynchronously when

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

14

16.3 History of Ajax

4

The term Ajax was coined by Jesse James Garrett of Adaptive
Path in February 2005, when he was presenting the previously
unnamed technology to a client

Ajax technologies (HTML, JavaScript, CSS, dynamic HTML, the
DOM and XML) had existed for many years prior to 2005

In 1998, Microsoft introduced the XMLHttpRequest object to
create and manage asynchronous requests and responses
Popular applications like Flickr, Google’s Gmail and Google
Maps use the XMLHttpRequest object to update pages
dynamically

Ajax has enabled “webtop” applications to challenge the
dominance of established desktop applications

This has become increasingly significant as more and more
computing moves to “the cloud.”

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

15

16.4 “Raw” Ajax Example using the
XMLHttpRequest Object

» XMLHttpRequest object

Resides on the client

Is the layer between the client and the server that manages asynchronous requests in Ajax applications
Supported on most browsers, though they may implement it differently

» To initiate an asynchronous request
= Create an instance of the XMLHttpRequest object

= Use its open method to set up the request, and its send method to initiate the
request

» When an Ajax alpplication requests a file from a server, the
browser typically caches that file

= Subsequent requests for the same file can load it from the browser’s cache

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

16

s

Z2>] When an Ajax application requests a file from a server,
such as an HTMLS document or an image, the browser
typically caches that file. Subsequent requests for the
same file can load it from the browser’s cache rather than
making the round trip to the server again.

5 Performance Tip 16.1

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 17

Software Engineering Observation 16.1

For security purposes, the XMLHttpRequest object
doesn’t allow a web application to request resources
from domains other than the one that served the
application. For this reason, the web application and its
resources must reside on the same web server (this could
be a web server on your local computer).This is
commonly known as the same origin policy (SOP).
SOP aims to close a vulnerability called cross-site
scripting, also known as XSS, which allows an attacker
to compromise a website’s security by injecting a
malicious script onto the page from another domain. To
get content from another domain securely, you can
implement a server-side proxy—an application on the
web application’s web server—that can make requests to
other servers on the web application’s behalf.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

18

<>

16.4.1 Asynchronous Requests

» When the third argument to XMLHttpRequest method open is
true, the request is asynchronous

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 19

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17
18
19
20
21
22
23

<!DOCTYPE html>

<!-- Fig. 16.5: SwitchContent.html -->

<!-- Asynchronously display content without reloading the page. -->
<html>
<head>

<meta charset = "utf-8">

<style type = "text/css'>
.box { border: 1px solid black; padding: 10px }
</style>
<title>Switch Content Asynchronously</title>
<script>
var asyncRequest; // variable to hold XMLHttpRequest object

// set up event handlers

function registerListeners()

{
var img;
img = document.getElementById("cpphtp");
img.addEventListener("mouseover",

function() { getContent("cpphtp8.html"™); }, false);

img.addEventListener("mouseout™, clearContent, false);
img = document.getElementById("iw3htp");

Fig. 16.5 | Asynchronously display content without reloading the
page. (Part | of 7.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

20

24 img.addEventListener("mouseover',

25 function() { getContent("iw3htp.html™); }, false);
26 img.addEventListener("mouseout™, clearContent, false);
27 img = document.getElementById("jhtp");

28 img.addEventListener("mouseover',

29 function() { getContent("jhtp.html"™); }, false);
30 img.addEventListener("mouseout™, clearContent, false);
31 img = document.getElementById("vbhtp");

32 img.addEventListener("mouseover",

33 function() { getContent("vbhtp.html1"); }, false);
34 img.addEventListener("mouseout™, clearContent, false);
35 img = document.getElementById("vcshtp”);

36 img.addEventListener("mouseover',

37 function() { getContent("vcshtp.html"”); }, false);
38 img.addEventListener("mouseout”, clearContent, false);
39 img = document.getElementById("javafp");

40 img.addEventListener("mouseover"’,

41 function() { getContent("javafp.html"”); }, false);
42 img.addEventListener("mouseout”, clearContent, false);
43 } // end function registerListeners

44

Fig. 16.5 | Asynchronously display content without reloading the
page. (Part 2 of 7.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

45 // set up and send the asynchronous request.

46 function getContent(url)

47 {

48 // attempt to create XMLHttpRequest object and make the request
49 try

50 {

51 asyncRequest = new XMLHttpRequest(); // create request object
52

53 // register event handler

54 asyncRequest.addEventListener(

55 "readystatechange", stateChange, false);

56 asyncRequest.open("GET", url, true); // prepare the request
57 asyncRequest.send(null); // send the request

58 } // end try

59 catch (exception)

60 {

61 alert("Request failed.”™);

62 } // end catch

63 } // end function getContent

64

Fig. 16.5 | Asynchronously display content without reloading the
page. (Part 3 of 7.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 22

65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83

// displays the response data on the page
function stateChange()
{
if (asyncRequest.readyState == 4 && asyncRequest.status == 200)
{
document.getElementById("contentArea"”™).innerHTML =
asyncRequest.responseText; // places text in contentArea
} // end if
} // end function stateChange

// clear the content of the box
function clearContent()
{
document.getElementById("contentArea”).innerHTML = "";
} // end function clearContent

window.addEventListener("load", registerListeners, false);
</script>
</head>

Fig. 16.5 | Asynchronously display content without reloading the
page. (Part 4 of 7.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

23

84 <body>

85 <h1l>Mouse over a book for more information.</hl>

86 <img id = "cpphtp" alt = "C++ How to Program book cover"

87 src = "http://test.deitel.com/images/thumbs/cpphtp8.jpg">

88 <img id = "iw3htp" alt = "Internet & WWW How to Program book cover"
89 src = "http://test.deitel.com/images/thumbs/iw3htp5.jpg">

90 <img id = "jhtp" alt = "Java How to Program book cover"

91 src = "http://test.deitel.com/images/thumbs/jhtp9.jpg">

92 <img id = "vbhtp" alt = "Visual Basic 2010 How to Program book cover"
93 src = "http://test.deitel.com/images/thumbs/vb2010htp. jpg">

94 <img id = "vcshtp” alt = "Visual C# 2010 How to Program book cover"
95 src = "http://test.deitel.com/images/thumbs/vcsharp2010htp.jpg' >
96 <img id = "javafp" alt = "Java for Programmers book cover"

97 src = "http://test.deitel.com/images/thumbs/javafp.jpg">

98 <div class = "box" 1id = "contentArea"s></div>

99 </body>

100 </html>

Fig. 16.5 | Asynchronously display content without reloading the
page. (Part 5 of 7.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

a) User hovers over C++ How to Program book-cover image, causing an asynchronous request to the server to
obtain the book’s description. When the response is received, the application performs a partial page update
to display the description.

(©) Switch Content Asynchron: »

&~ C | ® testdeitel.com/iw3htp5/ch16/fig16_05/SwitchContent.html i 8

Mouse over a book for more information.

m ' nternetd& _" I' 1va e llﬂﬂ Visual C# 2010 %
- SWarld Wide Web., KA \ HOW TO PROGRAM HOWITO ARABAAM

HOW TO PROGRAM HOW TO PROGRAM ¥

mouse cursor —

C++ How To Program 8th edition

* Easy-to-follow, carefully developed early classes and early objects approach

* Comprehensive coverage of the fundamentals of object-oriented programming in C++

* Optional automated teller machine (ATM) case study that teaches the fundamentals of software
engineering and object-oriented design with the UML

* Integrated case studies throughout the book inchuding: the Time class (Chapters 9 and 10); the
Employee class (Chapters 12 and 13) and the GradeBook class (Chapters 3-7)

* Uses string and vector classes to make earlier examples more object-oriented

¢ New optional sections on the forthcoming C++0x standard (due late in 2011 or early 2012)

¢ Updated coverage of the open source Boost libraries (several of which will be included in the C++0x
standard)

Fig. 16.5 | Asynchronously display content without reloading the
e. (Part 6 of 7.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

b) User hovers over Internet & World Wide Web How to Program book-cover image, causing the process to
repeat.

@ Switch Content Asynchron: »

€« C @ test.deitel.com/iw3htp5/ch16/fig16_05/SwitchContenthtm xdis &

Mouse over a book for more information.

”ntvrl:vh\- ¥ Iava o &B&m Visual C# 2010 %

SWarld Widg Web, HOW YO PROGRAM HOWITS AROB M

HOW TO PROGRAM HOW TO PROGRAM ¥

/‘

mouse cursor

Internet and World Wide Web How to Program, Sth edition introduces students with little or no programming
experience to the exciting world of Web-based applications. The book has been substantially reworked to reflect
today's Web 2.0 rich Internet application-development methodologies. A comprehensive book that teaches the
fundamentals needed to program on the Internet, this text provides in-depth coverage of introductory
programming principles, various markup languages (HTMLS, CSS3 and XML), several scripting languages
(JavaScript and PHP), Ajax, web services, Web servers (IIS and Apache) and relational databases
(MySQL/Apache Derby/Java DB)-all the skills and tools needed to create dynamic Web-based applications.
The text contains comprehensive introductions to ASP NET and JavaServer Faces (JSF). Hundreds of live-code
examples of real applications throughout the book allow readers to run the applications and see and hear the
outputs. The book provides instruction on building Ajax-enabled rich Internet applications that enhance the
presentation of online content and give web applications the look and feel of desktop applications. After
mastering the material in this book, students will be well prepared to build real-world, industrial-strength, Web-
based applications.

Fig. 16.5 | Asynchronously display content without reloading the
_(Part 7 of 7.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

16.4.2 Exception Handling

An exception is an indication of a problem that occurs during a program’s execution

Exception handling enables you to create applications that can resolve (or handle)
exceptions—in some cases allowing a program to continue executing as if no problem
had been encountered

try block

= Encloses code that might cause an exception and code that should not execute if an
exception occurs

= Consists of the keyword try followed by a block of code enclosed in curly braces ({})
When an exception occurs

= try block terminates immediately

= catch block catches (i.e., receives) and handles an exception

catch block

= Begins with the keyword catch

= Followed by an exception parameter in parentheses and a block of code enclosed in curly
braces

Exception parameter’s name

= Enables the catch block to interact with a caught exception object, which contains name
and message properties

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A
v

27

16.4.3 Callback Functions

» A callback function is registered as the
event handler for the XMLHttpRequest

object’s readystatechange event

= Whenever the request makes progress, the
)ﬁMLH;ctpRequest calls the readystatechange event
andler.

= Progress is monitored by the readyState property, which
has a value from 0O to 4

= The value O indicates that the request is not initialized and
the value 4 indicates that the request is complete.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A
v

28

16.4.4 XMLHttpRequest Object Event,
Properties and Methods

» The following figures summarize some of the

XMLHttpRequest object’s properties and methods,
respectively.

» The properties are crucial to interacting with asynchronous
requests.

» The methods initialize, configure and send asynchronous
requests.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 29

Event or
Property

Description

readystatechange

readyState

responseText

responseXML

Register a listener for this event to specify the callback function—the
event handler that gets called when the server responds.

Keeps track of the request’s progress. It’s usually used in the callback
function to determine when the code that processes the response
should be launched. The readyState value 0 signifies that the request
is uninitialized; 1 that the request is loading; 2 that the request has been
loaded; 3 that data is actively being sent from the server; and 4 that the
request has been completed.

Text that’s returned to the client by the server.

If the server’s response is in XML format, this property contains the
XML document; otherwise, it's empty. It can be used like a document
object in JavaScript, which makes it useful for receiving complex data
(e.g., populating a table).

Fig. 16.6 | xMLHttpRequest object event and properties. (Part | of
2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

30

Event or

Property Description

status HTTP status code of the request. A status of 200 means that request
was successful. A status of 404 means that the requested resource was
not found. A status of 500 denotes that there was an error while the
server was processing the request. For a complete status reference, visit
www.w3.org/Protocols/rfc2616/rfc2616-secl0.html.

statusText Additional information on the request’s status. It’s often used to display
the error to the user when the request fails.

Fig. 16.6 | xvLHttpRequest object event and properties. (Part 2 of
2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

31

Method Description

open Initializes the request and has two mandatory parameters—
method and URL. The method parameter specifies the purpose
of the request—rtypically GET or POST. The URL parameter speci-
fies the address of the file on the server that will generate the
response. A third optional Boolean parameter specifies whether
the request is asynchronous—it's set to true by default.

send Sends the request to the server. [t has one optional parameter,
data, which specifies the data to be POSTed to the server—it’s set to
null by default.

setRequestHeader Alters the request header. The two parameters specify the header
and its new value. It’s often used to set the content-type field.

getResponseHeader Returns the header data that precedes the response body. It takes
one parameter, the name of the header to retrieve. This call is
often used to determine the response’s type, to parse the response

correctly.

getAl1ResponseHeaders Returns an array that contains all the headers that precede the
response body.

abort Cancels the current request.

Fig. 16.7 | xMLHttpRequest object methods.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

32

(A
v

16.5 Using XML and the DOM

When passing structured data between the server
and the client, Ajax applications often use XML

because it consumes little bandwidth and is easy to
parse

XMLHttpRequest object responseXML property

= contains the parsed XML returned by the server

DOM method createElement
= Creates an HTMLS5 element of the specified type

DOM method appendChild

= |nserts one HTML5 element into another

innerHTML property of a DOM element

= Can be used to obtain or change the HTML5 that is displayed in a
particular element

v

v

v

v

v

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 33

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15

<!DOCTYPE html>

<!-- Fig. 16.8: PullImagesOntoPage.htm]l -->

<!-- Image catalog that uses 1lAjax to request XML data asynchronously.

<html>

<head>

<meta charset="utf-8">

<title> Pulling Images onto the Page </title>

<style type = "text/css'>
11 { display: inline-block; padding: 4px; width: 120px; }
img { border: 1px solid black }

</style>

<script>
var asyncRequest; // variable to hold XMLHttpRequest object

Fig. 16.8 | Image catalog that uses Ajax to request XML data
asynchronously. (Part | of 8.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

34

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

// set up and send the asynchronous request to get the XML file
function getImages(url)
{
// attempt to create XMLHttpRequest object and make the request
try
{
asyncRequest = new XMLHttpRequest(); // create request object

// register event handler
asyncRequest.addEventListener(

"readystatechange”, processResponse, false);
asyncRequest.open("GET", url, true); // prepare the request
asyncRequest.send(null); // send the request

} // end try
catch (exception)
{

alert('Request Failed');
} // end catch
} // end function getImages

Fig. 16.8 | Image catalog that uses Ajax to request XML data
asynchronously. (Part 2 of 8.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

35

36 // parses the XML response; dynamically creates an undordered 1ist and

37 // populates it with the response data; displays the 1list on the page
38 function processResponse()

39 {

40 // if request completed successfully and responseXML is non-null
41 if (asyncRequest.readyState == 4 && asyncRequest.status == 200 &&
42 asyncRequest.responseXML)

43 {

44 clearImages(); // prepare to display a new set of images

45

46 // get the covers from the responseXML

47 var covers = asyncRequest.responseXML.getElementsByTagName (
48 "cover")

49

50 // get base URL for the images

51 var baseUrl = asyncRequest.responseXML.getElementsByTagName(
52 "baseurl”™).item(0).firstChild.nodeValue;

53

54 // get the placeholder div element named covers

55 var output = document.getElementById("covers");

56

57 // create an unordered list to display the images

58 var imagesUL = document.createElement("ul");

Fig. 16.8 | Image catalog that uses Ajax to request XML data
asynchronously. (Part 3 of 8.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

59

60 // place images in unordered 1list

61 for (var i = 0; i < covers.length; ++i)

62 {

63 var cover = covers.item(i); // get a cover from covers array
64

65 // get the image filename

66 var image = cover.getElementsByTagName("image").

67 item(0).firstChild.nodeValue;

68

69 // create 11 and img element to display the image

70 var imagelLI = document.createETement("1i");

71 var imageTag = document.createElement("img");

72

73 // set img element's src attribute

74 imageTag.setAttribute("src'", baseUrl + escape(image));
75 imageLI.appendChild(imageTag); // place img in 11

76 imagesUL.appendChild(imagelI); // place 1i in ul

77 } // end for statement

78

79 output.appendChild(imagesUL); // append ul to covers div
80 } // end if

81 } // end function processResponse

Fig. 16.8 | Image catalog that uses Ajax to request XML data
asynchronously. (Part 4 of 8.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

// clears the covers div
function clearImages()
{
document.getElementById("“covers"”).innerHTML = "";
} // end function clearImages

// register event listeners
function registerListeners()
{
document.getElementById("all"”).addEventListener(
"click™, function() { getImages("all.xml™); }, false);
document.getETementById("simply").addEventListener(
"click", function() { getImages("simply.xml"); }, false);
document.getETementById("howto").addEventListener(
"click", function() { getImages("howto.xml"™); }, false);
document.getElementById("dotnet”).addEventListener(
"click”™, function() { getImages("dotnet.xml"); }, false);
document.getElementById("javaccpp").addEventListener(
"click™, function() { getImages("javaccpp.xml”™); }, false);
document.getElementById("none").addEventListener(
"click"”, clearImages, false);
} // end function registerListeners

Fig. 16.8 | Image catalog that uses Ajax to request XML data
asynchronously. (Part 5 of 8.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

38

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

window.addEventListener("load”, registerListeners, false);

</script>
</head>
<body>
<input type = "radio” name ="Books" value = "all"
id = "all"> A11 Books
<input type = “radio” name = "Books"” value = "simply"
id = "simply"> Simply Books
<input type = "radio” name = "Books" value = "howto"
id = "howto"> How to Program Books
<input type = "radio” name = "Books" value = "dotnet"
id = "dotnet"> .NET Books
<input type = “radio” name = "Books"” value = "javaccpp"
id = "javaccpp"> Java/C/C++ Books
<input type = "radio"” checked name = "Books" value = "none"
id = "none”> None
<div id = "covers'></div>
</body>
</html>

Fig. 16.8 | Image catalog that uses Ajax to request XML data
asynchronously. (Part 6 of 8.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

39

a) User clicks the All Books radio button to display all the book covers. The application sends an asynchronous
request to the server to obtain an XML document containing the list of book-cover filenames. When the
response is received, the application performs a partial page update to display the set of book covers.

@ Pulling Images onto the Pa

& C' | ® testdeitel.com/iw3htp5/ch16/figl6_08/PulllmagesOntoPage.htm wl o\

© AllBooks © Simply Books) How to Program Books ' NET Books © Java/C/C++ Books ¢ None

nternet& ¥, © visua UL Visual C# 2010 %
Warld Wide Web., N R 0 SRA HOWITO PRAGAHAM
HOW TO PROGRAM e

HAREY CRITHL

Nzual Basle2008
Sarpoplicaiun-Detven
» watal Apparrch

o

Fig. 16.8 | Image catalog that uses Ajax to request XML data
asynchronously. (Part 7 of 8.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 40

b) User clicks the How to Program Books radio button to select a subset of book covers to display. Application
sends an asynchronous request to the server to obtain an XML document containing the appropriate subset of
book-cover filenames. When the response is received, the application performs a partial page update to display

the subset of book covers.

® Pulling Images onto the Pa: »

& C | ® test.deitel.com/iw3htp5/ch16/figl6_08/PulllmagesOntoPage.htm kA 8

© AllBooks © Simply Books @ How to Program Books) NET Books) Java/C/C++ Books ©) None

nternet& ¥ o 'Visual Basic 2010 Visual C# 2010 .

\\uz]’d\"»'idu We ‘}}\ o) - De HOW TO PROGRAM
HOW TO PROC-ERAM 4 G .‘*

HOWTO PROG A M
o=

Fig. 16.8 | Image catalog that uses Ajax to request XML data
asynchronously. (Part 8 of 8.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

41

<]
16.6 Creating a Full-Scale Ajax—EnabIeaJ—

Application
» JSON (JavaScript Object Notation)

= Simple way to represent JavaScript objects as strings

= A simpler alternative to XML for passing data between the client and
the server

» JSON object

= Represented as a list of property names and values contained in curly
braces

» Array

= Represented in JSON with square brackets containing a comma-
separated list of values

= Each value in a JSON array can be a string, a number, a JSON
representation of an object, true, false or null

» JSON strings

= Easier to create and parse than XML
= Require fewer bytes

= For these reasons, JSON is commonly used to communicate in client/server
interaction

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 42

<

16.6.2 Rich Functionality

» The previous examﬂles in this chapter requested
data from files on the server.

» The next example is an address-book apBIication
that communicates with a server-side we
service.

» The aﬁplication uses server-side processing to
give the page the functionality and usability of a
desktop application.

» We use JSON to encode server-side responses and
to create objects on the fly.

» Each time the user clicks a name, the address
book uses Ajax functionality to load the person’s
address from the server and expand the entry
without reloading the page—and it does this /in
parallel with allowing the user to click other

names.

I

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

43

I <!DOCTYPE html>

2

3 <!-- Fig. 16.9 addressbook.html -->

4 <!-- Ajax enabled address book application. -->

5 <html>

6 <head>

7 <meta charset="utf-8">

8 <title>Address Book</title>

9 <link rel = "stylesheet" type = "text/css" href = "style.css">
10 <script src = "AddressBook.js"></script>

I1 </head>

12 <body>

13 <div>

14 <input id = "addressBookButton" type = "button”
15 value = "Address Book'>

16 <input 1id = "addEntryButton” type = "button”

17 value = "Add an Entry">

18 </div>

19 <div id = "addressBook"">
20 <p>Search By Last Name: <input id = "searchInput'></p>
21 <div id = "Names'></div>
22 </div>

Fig. 16.9 | Ajax-enabled address-book application. (Part | of 7.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

<div id = "addEntry" style = "display : none'>

<p><label>First Name:</label> <input id = "first'></p>
<p><label>Last Name:</Tlabel> <input id = "last'></p>
<p class = "head">Address:</p>
<p><label>Street:</label> <input id = "street'></p>
<p><label>City:</Tabel>
</p>
<p><label>State:</label>
</p>
<p><label>Zip:</1abel> <input id = "zip">
</p>
<p><label>Telephone:</1abel> <input id = "phone">
</p>
<p><input id = "submitButton” type = "button” value = "Submit"></p>
<div id = "success" class = "validator'></div>
</div>
</body>
</html>

Fig. 16.9 | Ajax-enabled address-book application. (Part 2 of 7.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

45

a) Page is loaded. All the entries are displayed. b) User clicks on an entry. The entry expands,

' (©) Address Book X '“ ' () Address Book '“

<« C @ testdeitel.com/iw3htp5/c Ty | X €« C | © testdeitel.com/iw3htp5/c 57 | X
| Address Book | | Add an Entry | | Address Book | [Add an Entry | -
Search By Last Name: Search By Last Name:
Cheryl Black Cheryl Black
77 Massachusetts ave
James Blue Cambridge, MA, 02139 s
555-111-2345 1
Meg Gold
James Blue
Mike Brown
Meg Gold
Mike Brown L

Fig. 16.9 | Ajax-enabled address-book application. (Part 3 of 7.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

c) User types "B" in the search field. Application d) User types "BI" in the search field.

loads the entries whose last names start with "B". Application loads the entries whose last names
start with "BI".
' @ Address Book x '“ ' @Address Book x '“
& C @ testdeitel.com/iw3htp5/c Ty A [C | @ testdeitel.com/iw3hip5/c 5y A
| Address Book | [Add an Entry | [Address Book | | Add an Entry |
Search By Last Name: ‘B | Search By Last Name: \BI
Cheryl Black Cheryl Black
James Blue James Blue
Mike Brown

Fig. 16.9 | Ajax-enabled address-book application. (Part 4 of 7.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

47

e) User types "Bla" in the search field.

Application loads the entries whose last names

start with "Bla".

' (T) Address Book . “

& C @ testdeitel.com/iw3htp5/c Ty | A

[Address Book] [Add an Entry]
Search By Last Name:]Bla |

Cheryl Black

f) User clicks Add an Entry button. The form
allowing user to add an entry is displayed.

' (©) Address Book X '“

&

C | © testdeitel.com/iw3htp5/cTg X

[Address Beok] [Add an Entry]

First Name:

Last Name:

Address:
Street:
City:

State:

Zip:
Telephone:

Fig. 16.9 | Ajax-enabled address-book application. (Part 5 of 7.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

48

g) User enters a valid ZIP code, then tabs to the h) The userenters a telephone number and tries

next field. The server finds the city and state to submit the data. The application does not
associated with the ZIP code entered and displays allow this, because the First Name and Last
them on the page. Name are empty.
' (©) Address Book H ' (©) Address Book \ ﬁ

€« C | © testdeitel.com/iw3htp5/c Ty A L C | @ test.deitel.com/iw3htp5/c3g | X

| Address Book | [Add an Entry | | Address Book | [Add an Entry |

First Name: \ First Name:

Last Name: | \ Last Name:

Address: Address:

: - ! Street: 1 Main Street
Street: |1 Main Street \ i
. : City: Maynard

City: Maynard State: MA

State: MA , Zip: 01754

Zip: 01754 | Telephone: |555-555-9643

First Name and Last Name must have a value.

Fig. 16.9 | Ajax-enabled address-book application. (Part 6 of 7.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

1) The user enters the last name and the first

name and clicks the Submit button.

' (©) Address Book X '“

<« C | @ testdeitel.com/iw3htp5/cse | X
[Address Book | [Add an Enty |

First Name: fJDhn ‘
Last Name: :Gra)_' ‘
Address:

Street: 1 Main Street ‘
City: Maynard

State: MA

Zip: 01754 |
Telephone: |555-555-9643 |
| Submityl

First Name and Last Name must have a vale.

j) The address book is redisplayed with the new

name added in.

' (©) Address Book > '“

€ C | @ testdeitel.com/iw3hip5/c3g X

[Address Book | [Add an Entry |
Search By Last Name:

Cheryl Black

James Blue

John Gray

Meg Gold

Mike Brown

Fig. 16.9 | Ajax-enabled address-book application. (Part 7 of 7.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

VoO~NONNDE WN =

10
11
12
13
14
I5
16
17
18

// Fig. 16.10 addressbook.js

// Ajax-enabled address-book JavaScript code

// URL of the web service

var webServiceUrl = "/AddressBookWebService/Service.svc";

var phoneValid = false; // indicates if the telephone is valid
var zipValid = false; //indicates if the ZIP code is valid

// get a 1list of names from the server and display them

function showAddressBook()

{
// hide the "addEntry" form and show the address book
document.getElementById("addEntry"”).style.display = "none";
document.getElementById("addressBook"™).style.display = "block";

callWebService("/getAllNames™, parseData);
} // end function showAddressBook

Fig. 16.10 | JavaScript code for the address-book application. (Part |
of 15.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

51

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

// send the asynchronous request to the web service
function callWebService(methodAndArguments, callBack)

{

// build request URL string
var requestUrl = webServiceUrl + methodAndArguments;

// attempt to send the asynchronous request
try
{

var asyncRequest = new XMLHttpRequest(); // create request

// set up callback function and store it
asyncRequest.addEventListener("readystatechange",
function() { callBack(asyncRequest); }, false);

// send the asynchronous request
asyncRequest.open("GET", requestUrl, true);
asyncRequest.setRequestHeader("Accept”,
"application/json; charset=utf-8");
asyncRequest.send(); // send request

} // end try
catch (exception)
{

Fig. 16.10 | JavaScript code for the address-book application. (Part 2
of 15.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

52

42 alert ("Request Failed");

43 } // end catch
44 1} // end function callWebService
45

46 // parse JSON data and display it on the page
47 function parseData(asyncRequest)

48 {

49 // 1f request has completed successfully, process the response
50 if (asyncRequest.readyState == 4 && asyncRequest.status == 200)
51 {

52 // convert the JSON string to an Object

53 var data = JSON.parse(asyncRequest.responseText);

54 dispTlayNames(data); // display data on the page

55 } // end if

56 1} // end function parseData

57

Fig. 16.10 | JavaScript code for the address-book application. (Part 3
of 15.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

58 // use the DOM to display the retrieved address-book entries
59 function displayNames(data)

60 {

61 // get the placeholder element from the page

62 var listBox = document.getElementById("Names");

63 listBox.innerHTML = ""; // clear the names on the page

64

65 // iterate over retrieved entries and display them on the page
66 for (var i = 0; i < data.length; ++i)

67 {

68 // dynamically create a div element for each entry

69 // and a fieldset element to place it in

70 var entry = document.createElement("div");

71 var field = document.createElement("fieldset");

72 entry.onclick = function() { getAddress(this, this.innerHTML); };
73 entry.id = i; // set the id

74 entry.innerHTML = datal 1]J.First + © " + datal[1].Last;
75 field.appendChild(entry); // insert entry into the field
76 1istBox.appendChild(field); // display the field

77 } // end for

78 1} // end function displayAll

79

Fig. 16.10 | JavaScript code for the address-book application. (Part 4
of 15.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

80 // search the address book for input
81 // and display the results on the page
82 function search(input)

83 {

84 // get the placeholder element and delete its content
85 var listBox = document.getElementById("Names");

86 TistBox.innerHTML = ""; // clear the display box

87

88 // if no search string is specified, all the names are displayed
89 if (input == """) // if no search value specified

90 {

91 showAddressBook(); // Load the entire address book
92 } // end if

93 else

94 {

95 callWebService("/search/" + 1input, parseData);
96 } // end else

97 1} // end function search

98

Fig. 16.10 | JavaScript code for the address-book application. (Part 5
of 15.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

55

929

101
102
103
104
105
106
107
108
109
110
11
112
113
114
115
116
117
118
119
120
121
122

// Get address data for a specific entry
100 function getAddress(entry, name)

{

// find the address in the JSON data using the element's id
// and display it on the page
var firstlLast = name.split(" "); // convert string to array
var requestUrl = webServiceUrl + "/getAddress/"

+ firstLast[0] + "/" + firstLast[1];

// attempt to send an asynchronous request
try
{

// create request object

var asyncRequest = new XMLHttpRequest();

// create a callback function with 2 parameters
asyncRequest.addEventListener("readystatechange”
function() { displayAddress(entry, asyncRequest); }, false);

asyncRequest.open("GET", requestUrl, true);
asyncRequest.setRequestHeader("Accept"”,
"application/json; charset=utf-8"); // set response datatype
asyncRequest.send(); // send request
} // end try

Fig. 16.10 | JavaScript code for the address-book application. (Part 6
of 15.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

56

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

catch (exception)

{
alert ("Request Failed.");
} // end catch

} // end function getAddress

// clear the entry's data
function displayAddress(entry, asyncRequest)

{

// if request has completed successfully, process the response
if (asyncRequest.readyState == 4 &% asyncRequest.status == 200)
{

// convert the JSON string to an object

var data = JSON.parse(asyncRequest.responseText);

var name = entry.innerHTML // save the name string

entry.innerHTML = name + "
" + data.Street +

"
" + data.City + ", " + data.State

+ ", + data.zZip + "
" + data.Telephone;

// change event listener
entry.onclick = function() { clearField(entry, name); };
} // end if

145 } // end function displayAddress

Fig. 16.10 | JavaScript code for the address-book application. (Part 7
of 15.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

57

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

// clear the entry's data

function clearField(entry, name)

{
entry.innerHTML = name; // set the entry to display only the name
entry.onclick = function() { getAddress(entry, name); };

} // end function clearField

// display the form that allows the user to enter more data
function addEntry()
{
document.getElementById("addressBook™).style.display = "none";
document.getElementById("addEntry”).style.display = "block”;
} // end function addEntry

// send the ZIP code to be validated and to generate city and state
function validateZip(zip)
{
callwebService ("/validateZip/" + zip, showCityState);
} // end function validateZip

Fig. 16.10 | JavaScript code for the address-book application. (Part 8
of 15.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

58

167 // get city and state that were generated using the zip code
168 // and display them on the page
169 function showCityState(asyncRequest)

170 {
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

// display message while request is being processed
document.getElementById("validateZip").
innerHTML = "Checking zip...";

// if request has completed successfully, process the response
if (asyncRequest.readyState == 4)
{
if (asyncRequest.status == 200)
{
// convert the JSON string to an object
var data = JSON.parse(asyncRequest.responseText);

// update ZIP-code validity tracker and show city and state
if (data.validity == "valid")
{

zipValid = true; // update validity tracker

// display city and state
document.getElementById("validateZip").innerHTML = "";

Fig. 16.10 | JavaScript code for the address-book application. (Part 9
of 15.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

59

190 document.getElementById("city").innerHTML = data.City;

191 document.getElementById("state”).

192 innerHTML = data.State;

193 } // end if

194 else

195 {

196 zipValid = false; // update validity tracker

197 document.getElementById("validateZip"”).

198 innerHTML = data.ErrorText; // display the error
199

200 // clear city and state values if they exist

201 document.getElementById("city").innerHTML = "";
202 document.getElementById("state").innerHTML = "";
203 } // end else

204 } // end if

205 else if (asyncRequest.status == 500)

206 {

207 document.getElementById("validateZip").

208 innerHTML = "Zip validation service not avaliable";
209 } // end else if

210 } // end if
211 } // end function showCityState
212

Fig. 16.10 | JavaScript code for the address-book application. (Part 10
of 15.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

213 // send the telephone number to the server to validate format

214 function validatePhone(phone)
215 {

216 callWebService("/validateTel/" + phone, showPhoneError);

217 } // end function validatePhone
218

Fig. 16.10 | JavaScript code for the address-book application. (Part 1|
of 15.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

61

219 // show whether the telephone number has correct format
220 function showPhoneError(asyncRequest)

221 {

222 // if request has completed successfully, process the response
223 if (asyncRequest.readyState == 4 && asyncRequest.status == 200)
224 {

225 // convert the JSON string to an object

226 var data = JSON.parse(asyncRequest.responseText);

227

228 if (data.ErrorText != "Valid Telephone Format")

229 {

230 phonevValid = false; // update validity tracker

231 document.getElementById("validatePhone”™).innerHTML =
232 data.ErrorText; // display the error

233 } // end if

234 else

235 {

236 phoneValid = true; // update validity tracker

237 } // end else

238 } // end if

239 } // end function showPhoneError

240

Fig. 16.10 | JavaScript code for the address-book application. (Part 12
of 15.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

241 // enter the user's data into the database
242 function saveForm()

243 {
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

// retrieve the data from the form

var first = document.getElementById("first").value;

var last = document.getElementById("last™).value;

var street = document.getElementById("street").value;
var city = document.getElementById("city").innerHTML;
var state = document.getElementById("state").innerHTML;
var zip = document.getElementById("zip").value;

var phone = document.getElementById("phone™).value;

// check if data is valid
if (!zipvalid || !phonevValid)
{
// display error message
document.getElementById("success”™).innerHTML =
"Invalid data entered. Check form for more information";
} // end if

Fig. 16.10 | JavaScript code for the address-book application. (Part 13
of 15.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

63

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

else if ((first == """) || (Tast == """))

{
// display error message
document.getElementById(“success").innerHTML =

"First Name and Last Name must have a value.”;

} // end if

else

{
// hide the form and show the address book
document.getETementById("addEntry"”).style.display = "none";
document.getElementById("addressBook™).style.display = "block";

// call the web service to insert data into the database
callWebService("/addEntry/" + first + "/" + last + "/" + street +
"/ city + /" + state + /" + zip + "/" + phone, parseData);
} // end else

276 } // end function saveForm

277

Fig. 16.10 | JavaScript code for the address-book application. (Part 14
of 15.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

64

278 // register event listeners
279 function start()

280 {
281
282
283
284
285
286
287
288
289
290
291
292
293
294

document.getETementById("addressBookButton").addEventListener(
"click"™, showAddressBook, false);
document.getElementById("addEntryButton").addEventListener(
"click", addEntry, false);
document.getElementById("searchInput”).addEventListener(
"keyup", function() { search(this.value); } , false);
document.getElementById("zip").addEventListener(
"blur”, function() { validateZip(this.value); } , false);
document.getElementById("phone”).addEventListener(
"blur", function() { validatePhone(this.value); } , false);
document.getElementById("submitButton").addEventListener(
"click", saveForm , false);

showAddressBook () ;

295 } // end function start

296

297 window.addEventListener("load", start, false);

Fig. 16.10 | JavaScript code for the address-book application. (Part 15
of 15.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

65

<]
16.6.3 Interacting with a Web Service OEJ_
the Server

» An ASP.NET REST web service created for this
example does the server-side processing.

» The web service contains a collection of methods,
including getAl1Names, that can be called from a
web application.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 66

16.6.4 Parsing Json Data

» Each of our web service’s methods in this
example returns a JSON representation of an
object or array of objects.

» For example, when the web application requests
the list of names in the address book, the list is
returned as a JSON array.

» Each object in has the attributes first and
last.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A
v

67

B2 WN -
P W W e W

Fig. 16.11 | Address-book data formatted in JSON.

"first":
"first':
"first":
"first":

"Cheryl"”, "last": "Black" },
"James", "last": "Blue" },
"Mike", "last": "Brown" },
'llMegll, "'Iast": IIGO'I d" }]

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

68

16.6.5 Creating HTMLS Elements and — —

Setting Event Handlers on the Fly

» To determine which address the user
clicked, we introduce the this keyword.

» In an event-handling function, th1is refers
to the DOM object on which the event
occurred.

» Our function uses th1is to refer to the
clicked entry.

» The this keyword allows us to use one
event handler to apply a change to one of
many DOM elements, depending on which
one received the event.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 69

<P
16.6.6 Implementing Type-Ahead

» To implement type-ahead

= Can use an element’s keyup event handler to make
asynchronous requests

©1992-2012 by Pearson Education, Inc. All
Rights Reserved. 70

16.6.6 Implementing a Form with

Asynchronous Validati

on

» The addEntry div in the HTML5 document

contains a set of entry fie
event handlers (registerec

ds, some of which have
in the JavaScript start

function) that enable valic

ation that occurs

asynchronously as the user continues to interact

with the page.

» When a user enters a ZIP code, then moves the
cursor to another field, the validatezip function

is called.

= calls an external web service

= If it’s valid, that external web
corresponding city and state.

to validate the ZIP code.
service returns the

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

v

71

