18

Database: LINQ - Microsoft Language-
Integrated Query

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<>

18.6 Microsoft Language
Integrated Query (LINQ)

» The next several sections introduce C#’s

LINQ (Language Integrated Query)
capabilities.

» LINQ allows you to write query expressions,

similar to SQL queries, that retrieve
information from a wide variety of data
sources, not just databases.

» We use LINQ to Objects in this section to

uery arrays and Lists, selecting elements
that satisfy a set of conditions—this is
known as filtering.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

(A
v

18.6.1 Querying an Array of int <

Values Using LINQ

» Repetition statements that filter arrays focus on the
process of getting the results—iterating throuigh
the elements and checking whether they satisfy the
desired criteria.

» LINQ specifies the conditions that selected
elements must satisfy. This is known as declarative
programming—as opposed to imperative
programming (which we’ve been doing so far) in
whikch you specify the actual steps to perform a
task.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

18.6.1 Querying an Array of int
Values Using LINQ (Cont.)

» The next several statements assume that the integer array
int[] values ={2,9,5,0,3,7,1,4,8,5}
is declared. The query

var filtered =
from value in values
where value > 4
select value;

specifies that the results should consist of all the ints in the
values array that are greater than 4 (i.e., 9, 5, 7, 8 and 5). It
does not specify Aow those results are obtained—the C#
compiler generates all the necessary code automatically,
which is one of the great strengths of LINQ.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

(A
v

<

18.6.1 Querying an Array of int

Values Using LINQ (Cont.)

The from Clause and Implicitly Typed Local Variables

»A LINQ query begins with a from clause, which
specifies a range variable (value) and the data
source to query (values).

»The range variable represents each item in the data
source (one at a time), much like the control variable
in a foreach statement. We do not specify the range
variable’s type.

rImplicitly typed local-variables enable the compiler
to /nfer a local variable’s type based on the context
in which it’s used.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

(A

18.6.1 Querying an Array of int
Values Using LINQ (Cont.)

The var Keyword and Implicitly Typed Local Variables

» You can also declare a local variable and let the compiler infer the
variable’s type based on the variable’s initializer. To do so, the var
keyword is used in place of the variable’s type when declaring the
variable. Consider the declaration

var X = 7;

» Here, the compiler /nfers that the variable x should be of type int,
because the compiler assumes that whole-number values, like 7, are
of type int.

» Similarly, in the declaration

var y = -123.45;

the compiler infers that y should be of type double, because the

compiler assumes that floating-point number values, like -123.45, are
of type double

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

(A

18.6.1 Querying an Array of int
Values Using LINQ (Cont.)

The where Clause

vIf the condition in the where clause evaluates to
true, the element is selected—i.e., it’s included in the
results.

»An expression that takes an element of a collection
and returns true or false by testing a condition on
that element is known as a predicate.

The select Clause

yFor each item in the data source, the select clause
determines what value appears in the results. A LINQ
query typically ends with a select clause.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

(A
v

18.6.1 Querying an Array of int

Values Using LINQ (Cont.)

[terating Through the Results of the LINQ Query
»The foreach statement

foreach (var element in filtered)
console.write(" {0}", element);

displays the query results.

»A foreach statement can iterate through the
contents of an array, collection or the results of a
LINQ query, allowing you to process each element in
the array, collection or query.

»The preceding foreach statement iterates over the
query result filtered, displaying each of its items.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

18.6.1 Querying an Array of int
Values Using LINQ (Cont.)

The orderby Clause

» The orderby clause sorts the query results in ascending
order. The query

var sorted =
from value in values
orderby value
select value;
sorts the integers in array values into ascending order and
assigns the results to variable sorted.

To sort in descending order, use descending in the orderby
clause, as in

orderby value descending

» An ascending modifier also exists but isn’t normally used,
because it’s the default.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

(A

v

18.6.1 Querying an Array of int
Values Using LINQ (Cont.)

» The following two queries generate the same results, but in
different ways:

var sortFilteredResults =
from value in filtered
orderby value descending
select value;

var sortAndFilter =
from value in values
where value > 4

orderby value descending
select value;

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

(A

v

<

18.6.1 Querying an Array of int
Values Using LINQ (Cont.)

» The first uses LINQ to sort the results of the filtered query
presented earlier in this section.

» The second query uses both the where and orderby clauses.

An Aside: Interface IEnumerable<T>

» foreach iterates over any so-called IEnumerable<T> object,
which just happens to be what a LINQ query returns.
IEnumerable<T> is an interface that describes the
functionality of any object that can be iterated over and thus
offers methods to access each element.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

18.6.2 Querying an Array of

Employee Objects Using LINQ

4

LINQ can be used with most data types, including strings and
user-defined classes.

The query result’s Any method returns true if there’s at least
one element, and false if there are no elements.

The query result’s First method returns the first element in
the result.

You should check that the query result is not empty before
calling First.

LINQ defines many more extension methods, such as Count,
which returns the number of elements in the results.

The Distinct extension method removes duplicate
elements, causing all elements in the result to be unique.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<

v

18.6.2 Querying an Array of
Employee Objects Using LINQ

» The syntax

new { e.FirstName, Last = e.LastName }

creates a new object of an anonymous type (a type with no
name), which the compiler generates for you based on the
properties listed in the curly braces ({}).

» In this case, the anonymous type consists of properties for
the first and last names of the selected Employee.

» The LastName property is assigned to the property Last in
the select clause.

» This is an example of a projection—it performs a
transformation on the data.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

(A
v

OVoOoO~NOTNDE WN =—

10
11
12
13
14
I5
16
17
18
19
20

// Fig. 18.23: Employee.cs
// Employee class with FirstName, LastName and MonthlySalary properties.
public class Employee

{

private decimal monthlySalaryValue; // monthly salary of employee

// auto-implemented property FirstName
public string FirstName { get; set; }

// auto-implemented property LastName
public string LastName { get; set; }

// constructor initializes first name, last name and monthly salary
public Employee(string first, string last, decimal salary)
{
FirstName = first;
LastName = last;
MonthlySalary = salary;
} // end constructor

Fig. 18.23 | EmpTloyee class. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

21 // property that gets and sets the employee's monthly salary

22 public decimal MonthlySalary

23 {

24 get

25 {

26 return monthlySalaryValue;

27 } // end get

28 set

29 {

30 if (value >= OM) // if salary is nonnegative
31 {

32 monthlySalaryValue = value;

33 } // end if

34 } // end set

35 } // end property MonthlySalary

36

37 // return a string containing the employee's information
38 public override string ToString()

39 {

40 return string.Format("{0,-10} {1,-10} {2,10:C}",
41 FirstName, LastName, MonthlySalary);

42 } // end method ToString

43 1} // end class Employee

Fig. 18.23 | EmpTloyee class. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

I // Fig. 18.24: LINQWithArrayOfObjects.cs

2 // LINQ to Objects using an array of Employee objects.
3 using System;

4 using System.Ling;

5

6 public class LINQWithArrayOfObjects

7 {

8 public static void Main(string[] args)

9 {

10 // initialize array of employees

11 Employee[] employees = {

12 new Employee("Jason”, "Red", 5000M),

13 new Employee("Ashley", "Green", 7600M),

14 new Employee("Matthew", "Indigo", 3587.5M),
15 new Employee("James"™, "Indigo", 4700.77M),
16 new Employee("Luke"”, "Indigo™, 6200M),

17 new Employee("Jason"”, "Blue", 3200M),

18 new Employee("Wendy", "Brown', 4236.4M) }; // end 1init list
19
20 // display all employees
21 Console.WriteLine("Original array:");
22 foreach (var element in employees)
23 Console.WriteLine(element);

Fig. 18.24 | LINQ to Objects using an array of Emp1oyee objects.
(Part | of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

// filter a range of salaries using & & in a LINQ query

var between4K6K =
from e in employees
where e.MonthlySalary >= 4000M && e.MonthlySalary <= 6000M
select e;

// display employees making between 4000 and 6000 per month
Console.WriteLine(string.Format(
"\nEmployees earning in the range {0:C}-{1:C} per month:",
4000, 6000));
foreach (var element in between4K6K)
Console.WriteLine(element);

// order the employees by last name, then first name with LINQ
var nameSorted =

from e in employees

orderby e.LastName, e.FirstName

select e;

// header
Console.WriteLine("\nFirst employee when sorted by name:");

Fig. 18.24 | LINQ to Objects using an array of Employee objects.
(Part 2 of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

47 // attempt to display the first result of the above LINQ query

48 if (nameSorted.Any())

49 Console.WriteLine(nameSorted.First());

50 else

51 Console.WriteLine("not found”);

52

53 // use LINQ to select employee last names

54 var lastNames =

55 from e 1in employees

56 select e.lLastName;

57

58 // use method Distinct to select unique last names
59 Console.WriteLine("\nUnique employee last names:");
60 foreach (var element in lastNames.Distinct())
61 Console.WriteLine(element);

62

63 // use LINQ to select first and last names

64 var names =

65 from e in employees

66 select new { e.FirstName, Last = e.LastName };
67

68 // display full names

69 Console.WriteLine("\nNames only:");

Fig. 18.24 | LINQ to Objects using an array of Employee objects.
(Part 3 of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

70 foreach (var element in names)

71 Console.WriteLine(element);
72

73 Console.WriteLine();

74 } // end Main

75 1} // end class LINQWithArrayOfObjects

Fig. 18.24 | LINQ to Objects using an array of EmpToyee objects.
(Part 4 of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Original array:

Jason Red $5,000.00
Ashley Green $7,600.00
Matthew Indigo $3,587.50
James Indigo $4,700.77
Luke Indigo $6,200.00
Jason Blue $3,200.00
Wendy Brown $4,236.40
Employees earning in the range $4,000.00-$6,000.00 per month:
Jason Red $5,000.00
James Indigo $4,700.77
Wendy Brown $4,236.40
First employee when sorted by name:
Jason Blue $3,200.00
Unique employee last names:

Red

Green

Indigo

Blue

Brown

Fig. 18.24 | LINQ to Objects using an array of Emp1oyee objects.
(Part 5 of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Names only:

{ FirstName = Jason, Last = Red }

{ FirstName = Ashley, Last = Green }

{ FirstName = Matthew, Last = Indigo }
{ FirstName = James, Last = Indigo }

{ FirstName = Luke, Last = Indigo }

{ FirstName = Jason, Last = Blue }

{ FirstName = Wendy, Last = Brown }

Fig. 18.24 | LINQ to Objects using an array of Emp1oyee objects.
(Part 6 of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

18.6.3 Querying a Generic

Collection Using LINQ

4

>

You can use LINQ to Objects to query Lists just as arrays.

LINQ’s Tet clause allows you to create a new range variable.

= Useful if you need to store a temporary result for use later in the LINQ
query.

= Typically, Tet declares a new range variable to which you assign the result
of an expression that operates on the query’s original range variable.

string method ToUpper converts each item to uppercase,
then stores the result in the new range variable
uppercasestring.

The where clause uses string method Startswith to
determine whether uppercaseString starts with the
character "R".

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

(A
v

(A

18.6.3 Querying a Generic
Collection Using LINQ (Cont.)

» deferred execution

= the query executes only when you access the results—such
as iterating over them or using the Count method—not
when you define the query.

= Allows you to create a query once and execute it many
times.

= Any changes to the data source are reflected in the results
each time the query executes.

» C# has a feature called collection
initializers, which provide a convenient
syntax (similar to array initializers) for

initializing a collection.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

// Fig. 18.25: LINQWithListCollection.cs
// LINQ to Objects using a List< string >.
using System;

using System.Ling;

using System.Collections.Generic;

public class LINQWithListCollection
{

public static void Main(string[] args)
{
// populate a List of strings
List< string > items = new List< string >();
items.Add("aQua"™); // add "aQua" to the end of the List
items.Add("RusT™); // add "RusT" to the end of the List
items.Add("yElLow"); // add "yElLow" to the end of the List
items.Add("rEd"); // add "rEd" to the end of the List
// convert all strings to uppercase; select those starting with "R"
var startsWithR =
from item 1in items
let uppercaseString = item.ToUpper()
where uppercaseString.StartsWith("R")
orderby uppercaseString
select uppercaseString;

Fig. 18.25 | LINQ to Objects using a List<string>. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

25

26 // display query results

27 foreach (var item 1in startsWithR)

28 Console.Write("{0} ", item);

29

30 Console.WriteLine(); // output end of Tline

31

32 items.Add("rUbY"); // add "rUbY" to the end of the List
33 items.Add("SaFfRon"); // add "SaFfRon" to the end of the List
34

35 // display updated query results

36 foreach (var item 1in startsWithR)

37 Console.Write("{0} ", item);

38

39 Console.WriteLine(); // output end of Tline

40 } // end Main

41 } // end class LINQWithListCollection

RED RUST
RED RUBY RUST

Fig. 18.25 | LINQ to Objects using a List<string>. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

18.7 LINQ to SQL

» LINQ to SQL enables you to access data in
SQL Server databases using the same LINQ
syntax introduced in the previous section.

» You interact with the database via classes
that are automatically generated from the

database schema by the IDE’s LINQ to SQL
Designer.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

(A

v

(A

18.7 LINQ to SQL (Cont.)

» For each table in the database, the IDE
creates two classes:

- A class that represents a row of the table. LINQ
to SQL creates objects of this class—called row
objects—to store the data from individual rows
of the table.

- A class that represents the table: LINQ to SQL
creates an object of this class to store a
collection of row objects that correspond to all
of the rows in the table.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

(A

18.7 LINQ to SQL (Cont.)

» Relationships between tables are also
taken into account in the generated

classes:

= |n a row object’s class, an additional property is
created for each foreign key.

= |n the class for a row object, an additional
property is created for the collection of row
objects with foreign-keys that reference the row
object’s primary key.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

(A

18.7 LINQ to SQL (Cont.)

TIQueryable Interface

»LINQ to SQL works through the 1Queryable

interface, which inherits from the IEnumerable
interface.

yWhen a LINQ to SQL query on an IQueryable
object executes against the database, the
results are loaded into objects of the
corresponding LINQ to SQL classes for
convenient access in your code.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

18.8 Querying a Database with
LINQ

4

The IDE provides visual programming
tools and wizards that simplify

accessing data in applications. These
tools

establish database connections

create the objects necessary to view and
manipulate the data through Windows

Forms GUI controls—a technique known as
data binding.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

(A
v

18.8 Querying a Database with
LINQ (Cont.)

» All of the controls in this GUI are
automatically generated when we drag a
data source that represents the Authors
table onto the Form in Design view.

» The BindingNavigator is a collection of
controls that allow you to navigate through
the records in the DataGridview that fills
the rest of the window.

» The BindingNavigator controls also allow
you to add records, delete records and save
your changes to the database.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

Move previous Move next Add new Save Data

Move first

Current position Move last Delete

GUI controls for the = v
BindingNavigator = N '

AuthorlD FirstName LastName
DataGridView with // » Harvey Deitel

the Authors table’s 2 Paul Deitel
column names Grog Byer
You can add a new record by 4 Dan Qi
typing in this row of the *
DataGridView

Fig. 18.26 | GUI for the Display Authors Table application.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A

18.8.1 Creating LINQ to SQL
Classes

Step 1. Creating the Project

»Create a new Windows Forms Application named
DisplayTable.

»Change the name of the source file to
DisplayAuthorsTable.cs.

»The IDE updates the Form’s class name to match the
source file.

»Set the Form’s Text property to Display Authors
Table.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

(A
v

18.8.1 Creating LINQ to SQL

Classes (Cont.)

Step 2: Adding a Database to the Project and
Connecting to the Database

»To interact with a database, you must create a
connection to the database.
 In Visual C# 2010 Express, select View > Other
Windows > Database Explorer to display the Database

Explorer window. If you’re using a full version of
p

Visual Studio, select View > Server Explorer to display
the Server Explorer.

- From this point forward, we’ll refer to the Database
Explorer. If you have a full version of Visual Studio,
substitute Server Explorer for Database Explorer in the
steps.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

18.8.1 Creating LINQ to SQL o

Classes (Cont.)

» Click the Connect to Database icon at the
top of the Database Explorer.

= If the Choose Data Source dialog appears,
select Microsoft SQL Server Database File from
the Data source: list.

= |f you check the Always use this selection
CheckBox, the IDE will use this type of
database file by default when you connect to
databases in the future.

= Click Continue to display the Add Connection
dialog.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

Data source:

Microsoft Access Database File

Microsoft SQL Server Compact 3.5
Microsoft SQL Server Database File

Data provider:

[.NET Framework Data Provider for SQL ¢ v]

Always use this selection

Description

Use this selection to attach a database
file to a local Microsoft SQL Server
instance (including Microsoft SQL
Express) using the .NET Framework Data
Provider for SQL Server.

[Continue [ﬁ[Cancel

Fig. 18.27 | Choose Data Source dialog.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

18.8.1 Creating LINQ to SQL
Classes (Cont.)

» In the Add Connection dialog, the Data
source: TextBox reflects your selection
from the Choose Data Source dialog.

= You can click the Change... Button to select a
different type of database.

= Next, click Browse... to locate and select the
Books .mdf file in the Databases directory
included with this chapter’s examples.

= You can click Test Connection to verify that the
IDE can connect to the database through SQL
Server Express. Click OK to create the
connection.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

(A

v

Error-Prevention Tip 18.1

Ensure that no other program is using the database file
before you attempt to add it to the project. Connecting to
the database requires exclusive access.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

WEEra e |

EasSavardy !

Fig. 18.28 | Add Connection dialog.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A

18.8.1 Creating LINQ to SQL
Classes (Cont.)

Step 3. Generating the LINQ to SQL classes

yRight click the project name in the Solution Explorer and
select Add > New Item... to display the Add New ltem dialog.
»Select the LINQ to SQL Classes template, name the new

item Books.dbml and click the Add button. The Object
Relational -Designer window will appear.

»You can also double click the Books.dbml file in the
Solution Explorer to open the Object Relational
Designer.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

ELGTCH TV DisplayAuthorsTable.cs [Design]
The Object Relational Designer allows you]i]
Drag the database’s to visualize data classes in your code, Create methods by
— dragging items from
tables here to generate Create data classes by dragging items from Database Explorer
the LINQ to SQL classes Database Explorer or Toolbox onte this onto this design
design surface, surface,
. '

Fig. 18.29 | Object Relational Designer window.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<

18.8.1 Creating LINQ to SQL
Classes (Cont.)

» Expand the Books.mdf database node in
the Database Explorer, then expand the
Tables node.

» Drag the Authors, Titles and
AuthorISBN tables onto the Object
Relational Designer.

» The IDE prompts whether you want to
copy the database to the project directory.
Select Yes.

» Save the Books.dbml file.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

-~

Author &
= Properties
75 AuthorD
ﬁ FirstName
5 LastName
.

AuthorlSEN

= Properties
T2 AuthorlD
725 1SBN

s

(Tite @)
= Properties
7 57 15BN
= Titlel
= EditionNumber
iy Copyright _
e s

Fig. 18.30 | Object Relational Designer window showing the
selected tables from the Books database and their relationships.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

Error-Prevention Tip 18.2

Be sure to save the file in the object Relational Designer before

trying to use the LINQ to SQL classes in code. The IDE
does not generate the classes until you save the file.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>

18.8.2 Data Bindings Between Controls
and the LINQ to SQL Classes

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

18.8.2 Data Bindings Between Controls
and the LINQ to SQL Classes

Step 1. Adding the Author LINQ to SQL Class as a
Data Source

»Select Data > Add New Data Source... to display the
Data Source Configuration Wizard.

»The LINQ to SQL classes are used to create objects
representing the tables in the database, so we’ll use
an Obiject data source.

»In the dialog, select Object and click Next >. Expand
the tree view as shown in and ensure that Author is
checked. An object of this class will be used as the
data source.

»Click Finish.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

(A

v

! Select the Data Objects

Expand the referenced assemblies and namespaces to select your objects. If an object is missing from a referenced
assembly, cancel the wizard and rebuild the project that contains the object.

What objects do you want to bind to?

4@ :=§ DisplayTable | Add Reference...

4 [H {} DisplayTable
[]“% Author
AuthorISBN
[[]%% BooksDataContext

[Title
b [] {} DisplayTable.My

Hide system assemblies

[sreviousyy | Net> | [uuufinishun] mmGanceluy]

Fig. 18.31 | Selecting the Author LINQ to SQL class as the data
urce.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Data Sources > 3 x
Jd sy &
AR Author
[123] AuthorlD
b ¢ AuthorlSBNs
FirstName
LastName

Fig. 18.32 | Data Sources window showing the Author class as
a data source.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A

18.8.2 Data Bindings Between Controls

and the LINQ to

SQL Classes (Cont.)

Step 2. Creating GUI Elements

»Switch to Design vi

ew for the

DisplayAuthorsTable class.
»Click the Author node in the Data Sources

window—it should

change to a drop-down list.

»Open the drop-down by clicking the down

arrow and ensure t
is selected—this is

nat the DataGridview option
the GUI control that will be

used to display anc

interact with the data.

»Drag the Author node from the Data Sources
window onto the Form in Design view.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

Books.dbml DisplayAuthorsTable.cs [Design] X _

4|0 off0} | » M |4 X H
‘ AuthorlD FirstName LastName

GUI controls for the
BindingNavigator

DataGridView with
the Authors table’s
column names

ObjeCtS in the component tray ___ i Wauthorsinding&mrte @aﬂthorﬂindingNavigator
(the gray area below the Form)

Fig. 18.33 | Component tray holds nonvisual components in
Design view.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A

18.8.2 Data Bindings Between Controls
and the LINQ to SQL Classes (Cont.)

Step 3. Connecting the BooksDataContext to the
authorBindingSource

»The final step is to connect the BooksDataContext
to the authorBindingSource (created earlier in this

section), so that the application can interact with the
database.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

v

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17
18
19

// Fig. 18.34: DisplayAuthorsTable.cs

// Displaying data from a database table in a DataGridView.
using System;

using System.Ling;

using System.Windows.Forms;

namespace DisplayTable

{

public partial class DisplayAuthorsTable : Form

{

// constructor
public DisplayAuthorsTable()
{

InitializeComponent();
} // end constructor

// LINQ to SQL data context
private BooksDataContext database = new BooksDataContext();

Fig. 18.34 | Displaying data from a database table in a
DataGridView. (Part | of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

20 // load data from database into DataGridView

21 private void DisplayAuthorsTable_Load(object sender, EventArgs e)
22 {

23 // use LINQ to order the data for display

24 authorBindingSource.DataSource =

25 from author 1in database.Authors

26 orderby author.AuthorID

27 select author;

28 } // end method DisplayAuthorsTable_Load

29

30 // click event handler for the Save Button in the

31 // BindingNavigator saves the changes made to the data

32 private void authorBindingNavigatorSaveItem_CTlick(

33 object sender, EventArgs e)

34 {

35 Validate(); // validate input fields

36 authorBindingSource.EndEdit(); // indicate edits are complete
37 database.SubmitChanges(); // write changes to database file
38 } // end method authorBindingNavigatorSaveItem_Click

39 } // end class DisplayAuthorsTable

40 1} // end namespace DisplayTable

Fig. 18.34 | Displaying data from a database table in a
DataGridView. (Part 2 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Pl 42 ofd | b M |4 X

AuthorlD FirstName LastName
» Harvey Deitel

2 Paul Deitel
Greg Ayer
Dan Quirk

*

Fig. 18.34 | Displaying data from a database table in a
DataGridView. (Part 3 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

18.8.2 Data Bindings Between Controls
and the LINQ to SQL Classes (Cont.)

Step 4. Saving Modifications Back to the Database

» By default, the BindingNavigator’s Save Data
Button is disabled. To enable it, right click the
icon and select Enabled.

» Double click the icon to create its Cl1ck event
handler.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

(A

v

18.8.2 Data Bindings Between Controls
and the LINQ to SQL Classes (Cont.)

Step 5: Configuring the Database File to Persist
Changes

»To persist changes for all executions, select the
database in the Solution Explorer and set the Copy to
Output Directory property in the Properties window to
Copy if newer.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

(A

v

<4
18.9 Dynamically Binding LINQ to SQL QUEH_
Results

The Display Query Results application allows the user
to select a query from the ComboBox at the bottom of
the window, then displays the results of the query.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

a) Results of the “All
titles” query, which
shows the contents

of the Tit1es table
ordered by the book

titles

P 41 of8 [b M |5 X H
ISBN | Title SEditionNumber Copyright

CHowto Program 5 2007
0136152503 C++ How to Program 6 2008
0131752421 Internet & World Wide Web How to Program |4 2008
0132222205 Java How to Program 7 2007
0136053033 Simply Visual Basic 2008 3 2009
013605305X Visual Basic 2008 How to Program 4 2009
013605322X Visual C# 2008 How to Program 3 2009
0136151574 Visual C++ 2008 How to Program 2 2008

*

A4

Fig. 18.35 | Sample execution of the Display Query Results
application.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

b) Results of the
“Titles with 2008

copyright” query

¢) Results of the
“Titles ending with
"How to Program’™

query

P 41

of3| b M| X H

ISBN Title EditionNumber Copyright

» 0136152503 C++ How to Program 6 2008
0131752421 Internet & World Wide Web How to Program |4 2008
0136151574 Visual C++ 2008 How to Pregram 2 2008

*

-

P 4|1

of7 | b M4 K

ISBN Title EditionNumber Copyright

» 0132404168 C How to Program 5 2007
0136152503 C++ How to Program 6 2008
0131752421 Internet & World Wide Web How to Program |4 2008
0132222205 Java How to Program 7 2007
013605305X Visual Basic 2008 How to Program 4 2009
013605322X Visual C# 2008 How to Program 3 2009
0136151574 Visual C++ 2008 How to Program 2 2008

*

itles ending with "How to Program”

Fig. 18.35 | Sample execution of the Display Query Results
application.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

18.9.1 Creating the Display Query Results
GUI

Step 1. Creating the Project

vFirst, create a new Windows Forms Application named
DisplayQueryResult. Rename the source file to
TitleQueries.cs. Set the Form’s Text property to
Display Query Results.

Step 2: Creating the LINQ to SQL Classes

yFollow the steps in to add the Books database to
the project and generate the LINQ to SQL classes.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

18.9.1 Creating the Display Query Results
GUI (Cont.)

Step 3. Creating a DataGridView to Display the Titles
Table

vFollow Steps 7 and 2 in Section 18.8.2 to create the
data source and the DataGridview.

»Select the T1tle class as the data source, and drag
the Ti1tle node from the Data Sources window onto
the form.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

18.9.1 Creating the Display Query Results
GUI (Cont.)

» Step 4. Adding a ComboBox to the Form

» In Design view, add a ComboBox named
queriesComboBox below the DataGridview on the
Form.

» Set the ComboBox’s Dock property to Bottom and the
Data-Gridview’s Dock property to Fill.

» Add the names of the queries to the ComboBox.

» Open the ComboBox’s String Collection Editor by right
clicking the ComboBox and selecting Edit Items.

» You can also access the String Collection Editor from the
smart tag menu.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

18.9.1 Creating the Display Query Results
GUI (Cont.)

» In the String Collection Editor, add the following three
items to queriesComboBox—one for each of the queries
we’ll create:

- All titles
- Titles with 2008 copyright
- Titles ending with "How to Program”

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<

18.9.2 Coding the Display Query Results
Application

» Next you must write code that executes the
appropriate query each time the user chooses a
different item from queriesComboBox.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

OVoOoO~NOTNDE WN =—

10
11
12
13
14
15
16
17
18

// Fig. 18.36: TitleQueries.cs

// Displaying the result of a user-selected query in a DataGridView.
using System;

using System.Ling;

using System.Windows.Forms;

namespace DisplayQueryResult

{

public partial class TitleQueries : Form

{
public TitleQueries()

{
InitializeComponent();
} // end constructor

// LINQ to SQL data context
private BooksDataContext database = new BooksDataContext();

Fig. 18.36 | Displaying the result of a user-selected query in a
DataGridView. (Part | of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

19 // load data from database into DataGridView

20 private void TitleQueries_Load(object sender, EventArgs e)
21 {

22 // write SQL to standard output stream

23 database.Log = Console.Out;

24

25 // set the ComboBox to show the default query that

26 // selects all books from the Titles table

27 queriesComboBox.SelectedIndex = 0;

28 1} // end method TitleQueries_Load

29

30 // Click event handler for the Save Button in the

31 // BindingNavigator saves the changes made to the data

32 private void titleBindingNavigatorSaveItem_Click(

33 object sender, EventArgs e)

34 {

35 Validate(); // validate 1input fields

36 titleBindingSource.EndEdit(); // indicate edits are complete
37 database.SubmitChanges(); // write changes to database file
38

39 // when saving, return to "all titles" query

40 queriesComboBox.SelectedIndex = 0;

41 } // end method titleBindingNavigatorSaveltem_Click

Fig. 18.36 | Displaying the result of a user-selected query in a
DataGridView. (Part 2 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

42

43 // loads data into titleBindingSource based on user-selected query
44 private void queriesComboBox_SelectedIndexChanged(
a3 object sender, EventArgs e)

46 {

47 // set the data displayed according to what is selected
48 switch (queriesComboBox.SelectedIndex)

49 {

50 case 0: // all titles

51 // use LINQ to order the books by title
52 titleBindingSource.DataSource =

53 from book 1in database.Titles

54 orderby book.Titlel

55 select book;

56 break;

57 case 1: // titles with 2008 copyright

58 // use LINQ to get titles with 2008

59 // copyright and sort them by title

60 titleBindingSource.DataSource =

61 from book 1in database.Titles

62 where book.Copyright == "2008"

63 orderby book.Titlel

64 select book;

65 break;

Fig. 18.36 | Displaying the result of a user-selected query in a
aGridView. (Part 3 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

66 case 2: // titles ending with "How to Program"

67 // use LINQ to get titles ending with

68 // "How to Program” and sort them by title

69 titleBindingSource.DataSource =

70 from book 1in database.Titles

71 where book.Titlel.EndsWith("How to Program”)
72 orderby book.Titlel

73 select book;

74 break;

75 } // end switch

76

77 titleBindingSource.MoveFirst(); // move to first entry
78 } // end method queriesComboBox_SelectedIndexChanged

79 } // end class TitleQueries

80 } // end namespace DisplayQueryResult

Fig. 18.36 | Displaying the result of a user-selected query in a
DataGridView. (Part 4 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

