
Database: LINQ – Microsoft Language-
Integrated Query

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 The next several sections introduce C#’s
LINQ (Language Integrated Query)
capabilities.

 LINQ allows you to write query expressions,
similar to SQL queries, that retrieve
information from a wide variety of data
sources, not just databases.

 We use LINQ to Objects in this section to
query arrays and Lists, selecting elements
that satisfy a set of conditions—this is
known as filtering.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 Repetition statements that filter arrays focus on the
process of getting the results—iterating through
the elements and checking whether they satisfy the
desired criteria.

 LINQ specifies the conditions that selected
elements must satisfy. This is known as declarative
programming—as opposed to imperative
programming (which we’ve been doing so far) in
which you specify the actual steps to perform a
task.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 The next several statements assume that the integer array

 int[] values = { 2, 9, 5, 0, 3, 7, 1, 4, 8, 5 };

is declared. The query

 var filtered =
 from value in values
 where value > 4
 select value;

specifies that the results should consist of all the ints in the
values array that are greater than 4 (i.e., 9, 5, 7, 8 and 5). It
does not specify how those results are obtained—the C#
compiler generates all the necessary code automatically,
which is one of the great strengths of LINQ.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

The from Clause and Implicitly Typed Local Variables

A LINQ query begins with a from clause, which
specifies a range variable (value) and the data
source to query (values).

The range variable represents each item in the data
source (one at a time), much like the control variable
in a foreach statement. We do not specify the range
variable’s type.
Implicitly typed local-variables enable the compiler
to infer a local variable’s type based on the context
in which it’s used.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

The var Keyword and Implicitly Typed Local Variables

 You can also declare a local variable and let the compiler infer the
variable’s type based on the variable’s initializer. To do so, the var
keyword is used in place of the variable’s type when declaring the
variable. Consider the declaration

 var x = 7;

 Here, the compiler infers that the variable x should be of type int,
because the compiler assumes that whole-number values, like 7, are
of type int.

 Similarly, in the declaration

 var y = -123.45;

the compiler infers that y should be of type double, because the
compiler assumes that floating-point number values, like -123.45, are
of type double

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

The where Clause

If the condition in the where clause evaluates to
true, the element is selected—i.e., it’s included in the
results.

An expression that takes an element of a collection
and returns true or false by testing a condition on
that element is known as a predicate.

The select Clause

For each item in the data source, the select clause
determines what value appears in the results. A LINQ
query typically ends with a select clause.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Iterating Through the Results of the LINQ Query
The foreach statement

 foreach (var element in filtered)
 Console.Write(" {0}", element);

displays the query results.

A foreach statement can iterate through the
contents of an array, collection or the results of a
LINQ query, allowing you to process each element in
the array, collection or query.

The preceding foreach statement iterates over the
query result filtered, displaying each of its items.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

The orderby Clause

 The orderby clause sorts the query results in ascending
order. The query

 var sorted =
 from value in values
 orderby value
 select value;

sorts the integers in array values into ascending order and
assigns the results to variable sorted.

To sort in descending order, use descending in the orderby
clause, as in

 orderby value descending

 An ascending modifier also exists but isn’t normally used,
because it’s the default.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 The following two queries generate the same results, but in
different ways:

 var sortFilteredResults =
 from value in filtered
 orderby value descending
 select value;

 var sortAndFilter =
 from value in values
 where value > 4
 orderby value descending
 select value;

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 The first uses LINQ to sort the results of the filtered query
presented earlier in this section.

 The second query uses both the where and orderby clauses.

An Aside: Interface IEnumerable<T>

 foreach iterates over any so-called IEnumerable<T> object,
which just happens to be what a LINQ query returns.
IEnumerable<T> is an interface that describes the
functionality of any object that can be iterated over and thus
offers methods to access each element.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 LINQ can be used with most data types, including strings and
user-defined classes.

 The query result’s Any method returns true if there’s at least
one element, and false if there are no elements.

 The query result’s First method returns the first element in
the result.

 You should check that the query result is not empty before
calling First.

 LINQ defines many more extension methods, such as Count,
which returns the number of elements in the results.

 The Distinct extension method removes duplicate
elements, causing all elements in the result to be unique.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 The syntax

 new { e.FirstName, Last = e.LastName }

creates a new object of an anonymous type (a type with no
name), which the compiler generates for you based on the
properties listed in the curly braces ({}).

 In this case, the anonymous type consists of properties for
the first and last names of the selected Employee.

 The LastName property is assigned to the property Last in
the select clause.

 This is an example of a projection—it performs a
transformation on the data.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

 You can use LINQ to Objects to query Lists just as arrays.

 LINQ’s let clause allows you to create a new range variable.
 Useful if you need to store a temporary result for use later in the LINQ

query.

 Typically, let declares a new range variable to which you assign the result
of an expression that operates on the query’s original range variable.

 string method ToUpper converts each item to uppercase,
then stores the result in the new range variable
uppercaseString.

 The where clause uses string method StartsWith to
determine whether uppercaseString starts with the
character "R".

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 deferred execution
 the query executes only when you access the results—such

as iterating over them or using the Count method—not
when you define the query.

 Allows you to create a query once and execute it many
times.

 Any changes to the data source are reflected in the results
each time the query executes.

 C# has a feature called collection
initializers, which provide a convenient
syntax (similar to array initializers) for
initializing a collection.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

 LINQ to SQL enables you to access data in
SQL Server databases using the same LINQ
syntax introduced in the previous section.

 You interact with the database via classes
that are automatically generated from the
database schema by the IDE’s LINQ to SQL
Designer.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 For each table in the database, the IDE
creates two classes:
 A class that represents a row of the table. LINQ

to SQL creates objects of this class—called row
objects—to store the data from individual rows
of the table.

 A class that represents the table: LINQ to SQL
creates an object of this class to store a
collection of row objects that correspond to all
of the rows in the table.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 Relationships between tables are also
taken into account in the generated
classes:

 In a row object’s class, an additional property is
created for each foreign key.

 In the class for a row object, an additional
property is created for the collection of row
objects with foreign-keys that reference the row
object’s primary key.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

IQueryable Interface

LINQ to SQL works through the IQueryable
interface, which inherits from the IEnumerable
interface.

When a LINQ to SQL query on an IQueryable
object executes against the database, the
results are loaded into objects of the
corresponding LINQ to SQL classes for
convenient access in your code.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 The IDE provides visual programming
tools and wizards that simplify
accessing data in applications. These
tools

 establish database connections

 create the objects necessary to view and
manipulate the data through Windows
Forms GUI controls—a technique known as
data binding.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 All of the controls in this GUI are
automatically generated when we drag a
data source that represents the Authors
table onto the Form in Design view.

 The BindingNavigator is a collection of
controls that allow you to navigate through
the records in the DataGridView that fills
the rest of the window.

 The BindingNavigator controls also allow
you to add records, delete records and save
your changes to the database.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

Step 1: Creating the Project

Create a new Windows Forms Application named
DisplayTable.

Change the name of the source file to
DisplayAuthorsTable.cs.

The IDE updates the Form’s class name to match the
source file.

Set the Form’s Text property to Display Authors
Table.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Step 2: Adding a Database to the Project and
Connecting to the Database
To interact with a database, you must create a
connection to the database.

 In Visual C# 2010 Express, select View > Other

Windows > Database Explorer to display the Database

Explorer window. If you’re using a full version of
Visual Studio, select View > Server Explorer to display
the Server Explorer.

 From this point forward, we’ll refer to the Database
Explorer. If you have a full version of Visual Studio,
substitute Server Explorer for Database Explorer in the
steps.

 ©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 Click the Connect to Database icon at the
top of the Database Explorer.

 If the Choose Data Source dialog appears,
select Microsoft SQL Server Database File from
the Data source: list.

 If you check the Always use this selection
CheckBox, the IDE will use this type of
database file by default when you connect to
databases in the future.

 Click Continue to display the Add Connection
dialog.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

 In the Add Connection dialog, the Data
source: TextBox reflects your selection
from the Choose Data Source dialog.

 You can click the Change… Button to select a
different type of database.

 Next, click Browse… to locate and select the
Books.mdf file in the Databases directory
included with this chapter’s examples.

 You can click Test Connection to verify that the
IDE can connect to the database through SQL
Server Express. Click OK to create the
connection.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

Step 3: Generating the LINQ to SQL classes
Right click the project name in the Solution Explorer and

select Add > New Item… to display the Add New Item dialog.

Select the LINQ to SQL Classes template, name the new
item Books.dbml and click the Add button. The Object

Relational -Designer window will appear.

You can also double click the Books.dbml file in the
Solution Explorer to open the Object Relational

Designer.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

 Expand the Books.mdf database node in
the Database Explorer, then expand the
Tables node.
 Drag the Authors, Titles and
AuthorISBN tables onto the Object
Relational Designer.
 The IDE prompts whether you want to
copy the database to the project directory.
Select Yes.
 Save the Books.dbml file.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Step 1: Adding the Author LINQ to SQL Class as a
Data Source
Select Data > Add New Data Source… to display the
Data Source Configuration Wizard.
The LINQ to SQL classes are used to create objects
representing the tables in the database, so we’ll use
an Object data source.

In the dialog, select Object and click Next >. Expand
the tree view as shown in and ensure that Author is
checked. An object of this class will be used as the
data source.

Click Finish.

 ©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

Step 2: Creating GUI Elements

Switch to Design view for the
DisplayAuthorsTable class.

Click the Author node in the Data Sources
window—it should change to a drop-down list.
Open the drop-down by clicking the down
arrow and ensure that the DataGridView option
is selected—this is the GUI control that will be
used to display and interact with the data.

Drag the Author node from the Data Sources
window onto the Form in Design view.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

Step 3: Connecting the BooksDataContext to the
authorBindingSource
The final step is to connect the BooksDataContext
to the authorBindingSource (created earlier in this
section), so that the application can interact with the
database.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

Step 4: Saving Modifications Back to the Database

 By default, the BindingNavigator’s Save Data
Button is disabled. To enable it, right click the
icon and select Enabled.

 Double click the icon to create its Click event
handler.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Step 5: Configuring the Database File to Persist
Changes

To persist changes for all executions, select the
database in the Solution Explorer and set the Copy to

Output Directory property in the Properties window to
Copy if newer.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

The Display Query Results application allows the user
to select a query from the ComboBox at the bottom of
the window, then displays the results of the query.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

Step 1: Creating the Project

First, create a new Windows Forms Application named
DisplayQueryResult. Rename the source file to
TitleQueries.cs. Set the Form’s Text property to
Display Query Results.

Step 2: Creating the LINQ to SQL Classes

Follow the steps in to add the Books database to
the project and generate the LINQ to SQL classes.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Step 3: Creating a DataGridView to Display the Titles
Table

Follow Steps 1 and 2 in Section 18.8.2 to create the
data source and the DataGridView.

Select the Title class as the data source, and drag
the Title node from the Data Sources window onto
the form.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 Step 4: Adding a ComboBox to the Form

 In Design view, add a ComboBox named
queriesComboBox below the DataGridView on the
Form.

 Set the ComboBox’s Dock property to Bottom and the
Data-GridView’s Dock property to Fill.

 Add the names of the queries to the ComboBox.

 Open the ComboBox’s String Collection Editor by right
clicking the ComboBox and selecting Edit Items.

 You can also access the String Collection Editor from the
smart tag menu.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 In the String Collection Editor, add the following three
items to queriesComboBox—one for each of the queries
we’ll create:
 All titles

 Titles with 2008 copyright

 Titles ending with "How to Program"

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 Next you must write code that executes the
appropriate query each time the user chooses a
different item from queriesComboBox.

©1992-2012 by Pearson Education, Inc.

All Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

