19

» Introduction to PHP

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>

OBJECTIVES

In this chapter you will:

m Manipulate data of various types.

m Use operators, arrays and control statements.

m Use regular expressions to search for text that matches a patterns.
m Construct programs that process form data.

m Store data on the client using cookies.

m Create programs that interact with MySQL databases.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

19.1
19.2
19.3
19.4
19.5
19.6
19.7

Introduction

Simple PHP Program

Converting Between Data Types
Arithmetic Operators

Initializing and Manipulating Arrays
String Comparisons

String Processing with Regular Expressions
19.7.1 Searching for Expressions

19.7.2 Representing Patterns

19.7.3 Finding Matches

19.7.4 Character Classes

19.7.5 Finding Multiple Instances of a Pattern

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

19.8 Form Processing and Business Logic
19.8.1 Superglobal Arrays

19.8.2 Using PHP to Process HTML5 Forms
19.9 Reading from a Database

19.10 Using Cookies
19.11 Dynamic Content

19.12 Web Resources

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A

19.1 Introduction

» PHP, or PHP: Hypertext Preprocessor, has
become the most popular server-side
scripting language for creating dynamic web
pages.

» PHP is open source and platform
independent—implementations exist for all
major UNIX, Linux, Mac and Windows
operating systems. PHP also supports a large
number of databases.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

(A

19.2 A Simple PHP Program

» The power of the web resides not only in serving content to
users, but also in responding to requests from users and
generating web pages with dynamic content.

» PHP code is embedded directly into text-based documents,
such as HTML, though these script segments are interpreted
by a server before being delivered to the client.

» PHP script file names end with . php.

» In PHP, code is inserted between the scripting delimiters

<?php and ?>. PHP code can be placed anywhere in HTMLS5
markup, as long as the code is enclosed in these delimiters.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

<
19.2 A Simple PHP Program (Cont.)

» Variables are preceded by a $ and are created the first time
they’re encountered.

» PHP statements terminate with a semicolon (;).

» Single-line comments which begin with two forward slashes
(//) or a pound sign (#). Text to the right of the delimiter is
ignored by the interpreter. Multiline comments begin with
delimiter /* and end with delimiter */.

» When a variable is encountered inside a double-quoted (")
string, PHP interpolates the variable. In other words, PHP

inserts the variable’s value where the variable name appears
in the string.

» All operations requiring PHP interpolation execute on the
server before the HTML5 document is sent to the client.

» PHP variables are loosely typed—they can contain different
types of data at different times.

.........

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

Variable names in PHP are case sensitive. Failure to use
the proper mixture of cases to refer to a variable will
result in a logic error, since the script will create a new
variable for any name it doesn’t recognize as a
previously used variable.

ﬁ Common Programming Error 19.1

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Common Programming Error 19.2

Forgetting to terminate a statement with a semicolon (;)
1S a syntax error.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

I <!'DOCTYPE html>

2

3 <!-- Fig. 19.1: first.php -->

4 <!-- Simple PHP program. -->

5 <html>

6 <?php

7 $name = "Paul"; // declaration and initialization
8 ?><!-- end PHP script -->

9 <head>

10 <meta charset = "utf-8">

11 <title>Simple PHP document</title>

12 </head>

13 <body>

14 <l-- print variable name’s value -->

I5 <hl><?php print("Welcome to PHP, $name!"); ?></hl>
16 </body>

17 </html>

Fig. 19.1 | Simple PHP program. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Simple PHP document *

& C | ®© localhost/ch19/fig19_01/first.php woN

Welcome to PHP, Paul!

Fig. 19.1 | Simple PHP program. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Description

int, integer
float, double, real

string

bool, boolean
array

object
resource

NULL

Whole numbers (i.e., numbers without a decimal point).
Real numbers (i.c., numbers containing a decimal point).

Text enclosed in either single (" ') or double (") quotes. [/Note: Using
double quotes allows PHP to recognize more escape sequences.]

true or false.

Group of elements.

Group of associated data and methods.

An external source—usually information from a database.

No value.

Fig. 19.2 | PHP types.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

19.3 Converting Between Data

Types

4

Type conversions can be performed using function
settgfoe. This function takes two arguments—a
variable whose type is to be changed and the
variable’s new type.

Variables are typed based on the values assigned
to them.

Function gettype returns the current type of its
argument.

Calling function settype can result in loss of data.
For example, doubles are truncated when they are
converted to integers.

When converting from a string to a number, PHP
uses the value of the number that appears at the
beginning of the string. If no number appears at
the beginning, the string evaluates to 0.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A

19.3 Converting Between Data
Types

» Another option for conversion between types is
casting (or type casting). Casting does not change
a variable’s content—it creates a temporary copy of
a variable’s value in memory.

» The concatenation operator (.) combines multiple
strings.

» A print statement split over multiple lines prints
all the data that is enclosed in its parentheses.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

I <!'DOCTYPE html>

2

3 <!-- Fig. 19.3: data.php -->

4 <!-- Data type conversion. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Data type conversion</title>
9 <style type = "text/css''>

10 p { margin: 0; }

11 .head { margin-top: 10px; font-weight: bold; }
12 .space { margin-top: 10px; }

13 </style>

14 </head>

15 <body>

16 <?php

17 // declare a string, double and integer
F:] $testString = "3.5 seconds";

19 $testDouble = 79.2;
20 $testInteger = 12;
21 ?><!-- end PHP script -->
22

Fig. 19.3 | Data type conversion. (Part | of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

23 <!-- print each variable’s value and type -->

24 <p class = "head”>0riginal values:</p>

25 <?php

26 print("<p>$testString is a(n) " . gettype($testString)
27 O </p>")

28 print("<p>%$testDouble is a(n) " . gettype($testDouble)
29 L '</p>")

30 print("<p>$testInteger is a(n) " . gettype($testInteger)
31 . </p>")5

32 ?><!-- end PHP script -->

33 <p class = "head”>Converting to other data types:</p>

34 <?php

35 // call function settype to convert variable

36 // testString to different data types

37 print("<p>$testString ");

38 settype($testString, "double”™);

39 print(" as a double 1is $testString</p>");

40 print("<p>$testString ");

41 settype($testString, "integer”);

42 print(" as an integer is $testString</p>");

43 settype($testString, "string”);

44 print("<p class = 'space'>Converting back to a string results in
45 $testString</p>");

46

Fig. 19.3 | Data type conversion. (Part 2 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

47 // use type casting to cast variables to a different type

48 fdata = "98.6 degrees";

49 print("<p class = 'space'>Before casting: S$data is a "
50 gettype($data) . "</p>");

51 print("<p class = 'space'>Using type casting instead:</p>
52 <p>as a double: " . (double) $data . "</p>" .

53 "<p>as an integer: " (integer) $data . "</p>"";

54 print("<p class = 'space'>After casting: $data is a "
55 gettype($data) . "</p>");

56 ?><!-- end PHP script -->

537 </body>

58 </html>

Fig. 19.3 | Data type conversion. (Part 3 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Data type conversion X

« C | @ localhost/ch19/fig19_03/data.php w N

Original values:

3.5 seconds is a(n) string
79.2 is a(n) double

12 is a(n) integer

Converting to other data tyvpes:
3.5 seconds as a double is 3.5

3.5 as an integer is 3
Converting back to a string results in 3
Before casting: 98 .6 degrees is a string

Using type casting instead:
as a double: 98.6
as an integer: 98

After casting: 98.6 degrees is a string

Fig. 19.3 | Data type conversion. (Part 4 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Function print can be used to display the value of a
variable at a particular point during a program’s
execution. This 1s often helpful in debugging a script.

@ Error-Prevention Tip 19.1

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<

19.4 Arithmetic Operators

» Function define creates a named constant. It takes two
arguments—the name and value of the constant. An
optional third argument accepts a boolean value that
specifies whether the constant is case insensitive—
constants are case sensitive by default.

» Uninitialized variables have undefined values that
evaluate differently, depending on the context. In a
numeric context, it evaluates to 0. In contrast, when an
undefined value is interpreted in a string context (e.qg.,
$nothing), it evaluates to the string "undef".

» Keywords may not be used as function, method, class

Oor namespdace names.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

Common Programming Error 19.3

Assigning a value to a constant after 1t’s declared is a
syntax error.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

I <!'DOCTYPE html>

2

3 <!-- Fig. 19.4: operators.php -->

4 <!-- Using arithmetic operators. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <style type = "text/css">

9 p { margin: 0; }

10 </style>

11 <title>Using arithmetic operators</title>
12 </head>

13 <body>

14 <?php

15 $a = 5;

16 print("<p>The value of variable a 1is $a</p>");
17

§:3 // define constant VALUE

19 define("VALUE", 5);
20
21 // add constant VALUE to variable $a
22 $a = $a + VALUE;
23 print("<p>Variable a after adding constant VALUE is $a</p>");
24

Fig. 19.4 | Using arithmetic operators. (Part | of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

25 // multiply variable $a by 2

26 $a *= 2;

27 print("<p>Multiplying variable a by 2 yields $a</p>");
28

29 // test if variable $a is less than 50

30 if ($a < 50)

31 print("<p>Variable a is less than 50</p>");

32

33 // add 40 to variable $a

34 $a += 40;

35 print("<p>Variable a after adding 40 is $a</p>");
36

37 // test if variable $a is 50 or less

38 if ($a < 51)

39 print("<p>Variable a is still 50 or less</p>");
40 elseif ($a < 101) // $a >= 51 and <= 100

41 print("<p>Variable a is now between 50 and 100,
42 inclusive</p>");

43 else // $a > 100

44 print("<p>Variable a is now greater than 100</p>");
45

46 // print an uninitialized variable

47 print("<p>Using a variable before initializing:

48 $nothing</p>"); // nothing evaluates to ""

49

Fig. 19.4 | Using arithmetic operators. (Part 2 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

50 // add constant VALUE to an uninitialized variable

51 $test = $num + VALUE; // num evaluates to O

52 print("<p>An uninitialized variable plus constant
53 VALUE yields $test</p>");

54

55 // add a string to an integer

56 $str = "3 dollars";

57 $a += $str;

58 print("<p>Adding a string to variable a yields $a</p>");
59 ?><!-- end PHP script -->

60 </body>

61 </html>

Fig. 19.4 | Using arithmetic operators. (Part 3 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

E:(:] Using arithmetic cperators »

< C | ®@ localhost/ch19/fig19_04/operatorsphp 8| N

The value of variable a is 5

Variable a after adding constant VALUE is 10
Multiplying variable a by 2 vields 20

Variable a is less than 50

Variable a after adding 40 is 60

Variable a is now between 50 and 100, inclusive

Notice: Undefined variable: nothing in
C:\xampp'htdocs'ch19\fig1? 04\operators.php on line 48
Using a variable before initializing:

Notice: Undefined variable: num in
C:\xampp'\htdocs\ch19\figl9 04\operators.php on line 51
An uninitialized variable plus constant VALUE vields 5
Adding a string to variable a yields 63

Fig. 19.4 | Using arithmetic operators. (Part 4 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Error-Prevention Tip 19.2

@ Initialize variables before they’re used to avoid subtle
errors. For example, multiplying a number by an
uninitialized variable results in O.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

PHP keywords

abstract and array as break
case catch class clone const
continue declare default do else
elseif enddeclare endfor endforeach endif
endswitch endwhile extends final for
foreach function global goto if
implements interface instanceof namespace hew
or private protected public static
switch throw try use var
while xor

Fig. 19.5 | PHP keywords.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Associativit

Operator y

new constructor none

clone copy an object

(] subscript left to right

o increment none

-- decrement

~ bitwise not right to left

- unary negative

@ error control

(type) cast

instanceof none

! not right to left
multiplication left to right

/ division

% modulus

Fig. 19.6 | PHP operator precedence and associativity.
(Part | of 5.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Associativit

Operator y
+ addition left to right
- subtraction
concatenation
<< bitwise shift left left to right
>> bitwise shift right
less than none
greater than
<= less than or equal
>= greater than or equal
— equal none
I= not equal
e identical
l== not identical
& bitwise AND left to right
A bitwise XOR left to right

Fig. 19.6 | PHP operator precedence and associativity.
(Part 2 of 5.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Associativit

Operator y

| bitwise OR left to right
&& logical AND left to right
| logical OR left to right
?: ternary conditional left to right

Fig. 19.6 | PHP operator precedence and associativity.
(Part 3 of 5.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Associativit

Operator y

= assignment right to left
+= addition assignment

—= subtraction assignment

o multiplication assignment

/= division assighment

%= modulus assignment

&= bitwise AND assignment

| = bitwise OR assignment

A= bitwise exclusive OR assignment

.= concatenation assignment

<<= bitwise shift left assignment

>>= bitwise shift right assignment

=> assign value to a named key

and logical AND left to right
xor exclusive OR left to right
or logical OR left to right

Fig. 19.6 | PHP operator precedence and associativity.
(Part 4 of 5.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Associativit

Operator Type y

, list left to right

Fig. 19.6 | PHP operator precedence and associativity.
(Part 5 of 5.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

19.5 Initializing and Manipulatingi
Arrays

» PHP provides the capability to store data in arrays. Arrays are
divided into elements that behave as individual variables.
Array names, like other variables, begin with the $ symbol.

» Individual array elements are accessed by following the
array’s variable name with an index enclosed in square
brackets ([]).

v If a value is assigned to an array element of an array that
does not exist, then the array is created. Likewise, assigning a
value to an element where the index is omitted appends a
new element to the end of the array.

» Function count returns the total number of elements in the
array.

» Function arra?; creates an array that contains the arguments
passed to it. The first item in the argument list is stored as
the first array element (index 0), the second item is stored as
the second array element and so on.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

19.5 Initializing and Manipulating
Arrays (Cont.)

» Arrays with nonnumeric indices are called
associative arrays.

» You can create an associative array using the
operator =>, where the value to the left of the
operator is the array index and the value to the
right is the element’s value.

» PHP provides functions for iterating through the
elements of an array.

» Each array has a built-in internal pointer, which
points to the array element currently being
referenced.

» Function reset sets the internal pointer to the first
array element. Function key returns the index of
the element currently referenced by the internal
pointer, and function next moves the internal
pointer to the next element.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

19.5 Initializing and Manipulating

Arrays (Cont.)

» The foreach statement, designed

for

iterating through arrays, starts with the

array to iterate through, followed
keyword as, followed by two varia
first is assigned the index of the e

oy the
nles—the

ement

and the second is assigned the value of that
index’s element. (If only one variable is
listed after as, it is assigned the value of
the array element.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

I <!'DOCTYPE html>

2

3 <!-- Fig. 19.7: arrays.php -->

4 <!-- Array manipulation. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Array manipulation</title>
9 <style type = "text/css''>

10 p { margin: 0; }

11 .head { margin-top: 10px; font-weight: bold; }
12 </style>

13 </head>

14 <body>

15 <?php

16 // create array first

17 print("<p class = 'head'>Creating the first array</p>");
F:] $first[0] = "zero";

19 $first[1] = "one";
20 $first[2 1 = "two";
21 $first[] = "three";
22

Fig. 19.7 | Array manipulation. (Part | of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

23 // print each element’s index and value

24 for ($i = 0; $i < count($first); ++%i)

25 print("Element $i is $first[$il</p>");

26

27 print("<p class = 'head'>Creating the second array</p>");
28

29 // call function array to create array second

30 $second = array("zero", "one", "two", "three");

31

32 for ($i = 0; $i < count($second); ++%i)

33 print("Element $i is $second[$il</p>");

34

35 print("<p class = 'head'>Creating the third array</p>");
36

37 // assign values to entries using nonnumeric indices

38 $third["Amy"] = 21;

39 $third["Bob™] = 18;

40 $third["Carol"] = 23;

41

42 // iterate through the array elements and print each

43 // element’s name and value

44 for (reset($third); $element = key($third); next($third))
45 print("<p>$element is $third[$element]</p>");

46

47 print("<p class = 'head'>Creating the fourth array</p>");

Fig. 19.7 | Array manipulation. (Part 2 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

48

49 // call function array to create array fourth using
50 // string indices

51 $fourth = array(

52 "January" = "first", "February" => "second",
53 "March" => "third", "April" => "fourth",
54 "May" => "fifth", "June" => "sixth",
55 "July" => "seventh", "August" => "eighth",
56 "September" => "ninth", "October” => "tenth",
57 "November" => "eleventh",'"December" => "twelfth");
58

59 // print each element’s name and value

60 foreach ($fourth as $element => $value)

61 print("<p>%$element 1is the $value month</p>");
62 ?><!-- end PHP script -->

63 </body>

64 </html>

Fig. 19.7 | Array manipulation. (Part 3 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Array manipulation x

&= C' | ® localhost/ch19/fig19_07/arrays.php o A

Creating the first array
Element 0 is zero
Element 1 is one

Element 2 is two

Element 3 is three

Creating the second array
Element 0 is zero

Element 1 is one

Element 2 is two

Element 3 is three

Creating the third array
Amyis 21

Bobis 18

Carol is 23

Creating the fourth array
January is the first month
February is the second month
March is the third month

April is the fourth month

May is the fifth month

June is the sixth month

July is the seventh month
August is the eighth month
September is the ninth month
October is the tenth month
November is the eleventh month
December is the twelfth month

. 19.7 | Array manipulation. (Part 4 of 4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<

19.6 String Comparisons

» Many string-processing tasks can be accomplished
using the equality and relational operators (==, !=,
<, <=, > and >=).

» Function strcmp compares two strings. The
function returns -1 if the first string alphabetically
precedes the second string, O if the strings are
equal, and 1 if the first string alphabetically follows
the second.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

v

I <!'DOCTYPE html>

2

3 <!-- Fig. 19.8: compare.php -->

4 <!-- Using the string-comparison operators. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>String Comparison</title>

9 <style type = "text/css''>

10 p { margin: 0; }

11 </style>

12 </head>

13 <body>

14 <?php

15 // create array fruits

16 $fruits = array("apple”, "orange"”, "banana");
17

18 // iterate through each array element

19 for ($i = 0; $i < count($fruits); ++%1i)
20 {
21 // call function strcmp to compare the array element
22 // to string "banana"
23 if (stremp($fruits[$i 1, "banana™) < 0)
24 print("<p>" . $fruits[$i] . " is Tess than banana ");

Fig. 19.8 | Using the string-comparison operators. (Part | of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

25 elseif (strcemp($fruits[$i], "banana™) > 0)

26 print("<p>" . $fruits[$i] . " 1is greater than banana ");
27 else

28 print("<p>" . $fruits[$i] . " 1is equal to banana ");
29

30 // use relational operators to compare each element

31 // to string "apple"

32 if ($fruits[$i] < "apple”™)

33 print("and less than apple!</p>");

34 elseif ($fruits[$i] > "apple”)

35 print("and greater than apple!</p>");

36 elseif ($fruits[$i] == "apple"”)

37 print("and equal to apple!</p>");

38 } // end for

39 ?><!-- end PHP script -->

40 </body>

41 </html>

Fig. 19.8 | Using the string-comparison operators. (Part 2 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

String Cemparison

& C | ® localhost/ch19/figl9_08/compare.php %% N

apple is less than banana and equal to apple!
orange is greater than banana and greater than apple!
banana is equal to banana and greater than apple!

Fig. 19.8 | Using the string-comparison operators. (Part 3 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

