Chapter 22: Web Services in
C#

Internet & World Wide Web
How to Program, 5/e

Note. This chapter is a copy of Chapter 28 of our book Visual C#
2010 How to Program. For that reason, we simply copied the

PowerPoint slides for this chapter and did not re-numb er them

© 1992-2011 by Pearson Education, Inc. All Rights Reserved.

OBJECTIVES

In this chapter you'll learn:

= How to create WCF web services.

= How XML, JSON, XML-Based Simple Object Access Protocol (SOAP) and
Representational State Transfer Architecture (REST) enable WCF web services.

= The elements that comprise WCF web services, such as service references, service
endpoints, service contracts and service bindings.

= How to create a client that consumes a WCF web service.
= How to use WCF web services with Windows and web applications.

= How to use session tracking in WCF web services to maintain state information for the
client.

= How to pass user-defined types to a WCF web service.

28.1
28.2
28.3
28.4

Introduction

WCEF Services Basics

Simple Object Access Protocol (SOAP)
Representational State Transfer (REST)

28.5 JavaScript Object Notation (JSON)

28.6

28.7

Publishing and Consuming SOAP-Based WCF Web Services
28.6.1 Creating a WCF Web Service

28.6.2 Code for the WelcomeSOAPXMLService

28.6.3 Building a SOAP WCF Web Service

28.6.4 Deploying the WelcomeSOAPXMLService

28.6.5 Creating a Client to Consume the WelcomeSOAPXMLService
28.6.6 Consuming the WelcomeSOAPXMLService

Publishing and Consuming REST-Based XML Web Services
28.7.1 HTTP get and post Requests

28.7.2 Creating a REST-Based XML WCF Web Service

28.7.3 Consuming a REST-Based XML WCF Web Service

28.8 Publishing and Consuming REST-Based J[SON Web Services
28.8.1 Creating a REST-Based]SON WCF Web Service
28.8.2 Consuming a REST-Based][SON WCF Web Service
28.9 Blackjack Web Service: Using Session Tracking in a SOAP-Based WCF
Web Service
28.9.1 Creating a Blackjack Web Service
28.9.2 Consuming the Blackjack Web Service
28.10 Airline Reservation Web Service: Database Access and Invoking a
Service from ASP.NET
28.11 Equation Generator: Returning User-Defined Types
28.11.1 Creating the REST-Based XML EquationGenerator Web Service
28.11.2 Consuming the REST-Based XML EquationGenerator Web Service
28.11.3 Creating the REST-Based]SON WCF EquationGenerator Web Service
28.11.4 Consuming the REST-Based]SON WCF EquationGenerator Web Service
28.12 Wrap-Up

28.13 Deitel Web Services Resource Centers

// Fig. 28.1: IWelcomeSOAPXMLService.cs

// WCF web service interface that returns a welcome message through SOAP
// protocol and XML data format.

using System.ServiceModel;

[ServiceContract]
public interface IWelcomeSOAPXMLService

{

VoOo~NONWNDE WN =

// returns a welcome message

10 [OperationContract]

11 string Welcome(string yourName);

12 } // end interface IWelcomeSOAPXMLService

Fig. 28.1 | WCF web-service interface that returns a welcome
message through SOAP protocol and XML format.

// Fig. 28.2: WelcomeSOAPXMLService.cs
// WCF web service that returns a welcome message using SOAP protocol and
// XML data format.
public class WelcomeSOAPXMLService : IWelcomeSOAPXMLService
{
// returns a welcome message
public string Welcome(string yourName)

{

VoOo~NONWNDE WN =

return string.Format(

10)
11 yourName);

12 } // end method Welcome

I3 1} // end class WelcomeSOAPXMLService

Fig. 28.2 | WCF web service that returns a welcome message
through the SOAP protocol and XML format.

Installed Templates

Visual Basic
Visual C#

Web location:

Recent Templates Sort by: [Defauii

Online Ternplates

Visual C#

LEC* ASP.NET Web Site

% ASP.NET Empty Web Site Visual CF
ASP.NET Dynamic Data Entitie... Visual C#

ASP.NET Dynamic Data Ling to...Visual C#

Visual C#

WCF Service h

WCF Service

wl € e

I Search Installed Templates L0 |

Type: Visual C#
A Web site for creating WCF services

| File System

v] ch28\fig28_01-02\WelcomeSOAPXMLService

o | G

Fig. 28.3 | Creating a WCF Service in Visual Web Developer.

7 | €] http://localhost49269/WelcomeSOAPXMLService/Servicesve |

ik Favorites @ WelcomeSOAPXMLService... | | fil ~ E) - = & ~ Page~ Sofety~ Took~ @- "

WelcomeSOAPXMLService Service b

5~

You have created a service.

To test this service, you will need to create a client and use it to call the service. You can do this using the
sveutil.exe tool from the command line with the following syntax:

svcutil.exe http://localhost:49269/WelcomeSOAPXMLService/Service.svcwsdl

This will generate a configuration file and a code file that contains the client class. Add the two files to your
client application and use the generated client class to call the Service. For example:

c#
class Test
{
static void Main()
{ =
WelcomeSOAPXMLServiceClient client = new WelcomeSORPXMLServiceClient();| |
// Use the 'client' variable to call operations on the service.
// Rlways close the client.
client.Close():
}
}
Visual Basic

Class Test
Shared Sub Main()
Dim client As WelcomeSOAPXMLServiceClient = New WelcomeSOAFPXMLServiceCl
' Use the 'client' variable to call operations on the service.

' Always close the client. LS
client.Close()
End Sub
End Class

a | . | »

Q. Local intranet | Protected Mode: Off 3 v ®H100% ~

Fig. 28.4 | SVC file rendered in a web browser.

Properties v ax

C:\books\2010\vcsharp2010htp\examples\ch28\fig28_01-0; ~

o= BINE

4i Developer Web Server
Always Start When Debugging True

Port number 49269

Use dynamic ports True

Virtual path /WelcomeSOAPXMLService ~
Developer Web Server

Fig. 28.5 | WCF web service Properties window.

Client
— — — — I — N

| Client code
(web service ‘
| consumer)

Service reference

| Proxy WSDL |
| class copy

\

Fig. 28.6 | .NET WCF web-service client after a web-service
reference has been added.

Client

> > » SOAP
Client Proxy Network web
code o object o < service

Fig. 28.7 | Interaction between a web-service client and a SOAP
web service.

I // Fig. 28.8: WelcomeSOAPXML.cs

2 // Client that consumes the WelcomeSOAPXMLService.

3 using System;

4 using System.Windows.Forms;

5

6 namespace WelcomeSOAPXMLClient

7 {

8 public partial class WelcomeSOAPXML : Form

9 {

10 // declare a reference to web service

11 private ServiceReference.WelcomeSOAPXMLServiceClient client;
12

13 public WelcomeSOAPXML ()

14 {

15 InitializeComponent();

16 client = new ServiceReference.WelcomeSOAPXMLServiceClient();
17 } // end constructor

18

19 // creates welcome message from text input and web service
20 private void submitButton_Click(object sender, EventArgs e)
21 {
22 MessageBox.Show(client.Welcome(textBox.Text),);
23 } // end method submitButton_Click
24 } // end class WelcomeSOAPXML

25 } // end namespace WelcomeSOAPXMLClient
Fig. 28.8 | Client that consumes the We1comeSOAPXMLService.

a) User inputs name and
clicks Submit to send it
to the web service

Enter your name: Paul|

b) Message returned by - (REESmem |

the web service

Welcome to WCF Web Services with SOAP and XML, Paul!

Fig. 28.8 | Client that consumes the We1comeSOAPXMLService.

VoOo~NONWNDE WN =

10
11
12
13
14

// Fig. 28.9: IWelcomeRESTXMLService.cs

// WCF web service interface. A class that implements this interface

// returns a welcome message through REST architecture and XML data format
using System.ServiceModel;

using System.ServiceModel.Web;

[ServiceContract]

public interface IWelcomeRESTXMLService

{
// returns a welcome message
[OperationContract]
[WebGet(UriTemplate =)]
string Welcome(string yourName);

} // end interface IWelcomeRESTXMLService

Fig. 28.9 | WCF web-service interface. A class that implements this
interface returns a welcome message through REST architecture and
XML data format.

I // Fig. 28.10: WelcomeRESTXMLService.cs

2 // WCF web service that returns a welcome message using REST architecture
3 // and XML data format.

4 public class WelcomeRESTXMLService : IWelcomeRESTXMLService
5 {

6 // returns a welcome message

7 public string Welcome(string yourName)

8 {

9 return string.Format(

10 + , yourName);

11 } // end method Welcome

12 } // end class WelcomeRESTXMLService

Fig. 28.10 | WCF web service that returns a welcome message using
REST architecture and XML data format.

VoOo~NONWNDE WN =

10
11
12
13
14
15
16
17
18
19
20
21

<system.serviceModel>
<behaviors>
<serviceBehaviors:>
<behavior>
<!-- To avoid disclosing metadata information, set the
value below to false and remove the metadata
endpoint above before deployment -->
<serviceMetadata httpGetEnabled= />
<!-- To receive exception details in faults for debugging
purposes, set the value below to true. Set to false
before deployment to avoid disclosing exception
information -->
<serviceDebug includeExceptionDetailInFaults= />
</behavior>
</serviceBehaviors>
<endpointBehaviors>
<behavior>
<webHttp/>
</behavior>
</endpointBehaviors>
</behaviors>

Fig. 28.11 | WelcomeRESTXMLService Web.config file. (Part | of
2.)

22 <protocolMapping>

23 <add scheme= binding= />
24 </protocolMapping>
25 <serviceHostingEnvironment multipleSiteBindingsEnabled="true"/>

26 </system.serviceModel>

Fig. 28.11 | WelcomeRESTXMLService Web.config file. (Part 2 of
2.)

3 Google o -

@' |] hitp://localhost:43429/WelcomeRESTXMLService/Service svc/welcome/Paul = | & [49 | X

¥ Favortes | @ hitpi/localhost:49429/WelcomeRESTXML... | | 3t v) ~ = @ v Page~ Safety~ Tools~ @~

<string xmlns="http:/ /schemas.microsoft.com/2003/10/Serialization/">Welcome to WCF Web =
Services with REST and XML, Paul!</string=

Done € Local intranet | Protected Mode: Off A v ®100% -

Fig. 28.12 | Response from WelcomeRESTXMLService in XML
data format.

VoOo~NONWNDE WN =

10
11
12
13
14
15
16
17

// Fig. 28.13: WelcomeRESTXML.cs

// Client that consumes the WelcomeRESTXMLService.
using System;

using System.Net;

using System.Windows.Forms;

using System.Xml.Ling;

namespace WelcomeRESTXMLClient

{
public partial class WelcomeRESTXML : Form

{
// object to invoke the WelcomeRESTXMLService
private WebClient client = new WebClient();

private XNamespace xmlNamespace = XNamespace.Get(

Fig. 28.13 | Client that consumes the We1comeRESTXMLService.
(Part | of 4.)

18 public WelcomeRESTXML ()

19 {

20 InitializeComponent();

21

22 // add DownloadStringCompleted event handler to WebClient
23 client.DownloadStringCompleted +=

24 new DownloadStringCompletedEventHandler(

25 client_DownloadStringCompleted);

26 } // end constructor

27

28 // get user input and pass it to the web service

29 private void submitButton_Click(object sender, EventArgs e)
30 {

31 // send request to WelcomeRESTXMLService

32 client.DownloadStringAsync(new Uri(

33

34 + textBox.Text));

35 } // end method submitButton_Click

36

Fig. 28.13 | Client that consumes the WelcomeRESTXMLService.
(Part 2 of 4.)

37 // process web service response

38 private void client_DownTloadStringCompleted(

39 object sender, DownloadStringCompletedEventArgs e)

40 {

41 // check if any error occurred in retrieving service data
42 if (e.Error == null)

43 {

44 // parse the returned XML string (e.Result)

45 XDocument xmlResponse = XDocument.Parse(e.Result);
46

47 // get the <string> element's value

48 MessageBox.Show(xmTResponse.Element(

49 xmlNamespace +).Value,)

50 } // end if

51 } // end method client_DownloadStringCompleted

52 } // end class WelcomeRESTXML

53 } // end namespace WelcomeRESTXMLClient

Fig. 28.13 | Client that consumes the We1comeRESTXMLService.
(Part 3 of 4.)

a) User inputs name b) Message sent from WelcomeRESTXMLService

Enter your name: Paul Welcome to WCF Web Services with REST and XML, Paul!

oK [

Fig. 28.13 | Client that consumes the WelcomeRESTXMLService.
(Part 4 of 4.)

I // Fig. 28.14: IWelcomeRESTISONService.cs

2 // WCF web service interface that returns a welcome message through REST
3 // architecture and JSON format.

4 using System.Runtime.Serialization;

5 using System.ServiceModel;

6 using System.ServiceModel.Web;

7

8 [ServiceContract]

9 public interface IWelcomeRESTISONService
10 {
11 // returns a welcome message
12 [OperationContract]
13 [WebGet(ResponseFormat = WebMessageFormat.Json,
14 UriTemplate =)]
15 TextMessage Welcome(string yourName);
16 1} // end interface IWelcomeRESTISONService
17

Fig. 28.14 | WCF web-service interface that returns a welcome
message through REST architecture and JSON format. (Part | of 2.)

18
19
20
21
22
23
24
25

// class to encapsulate a string to send in JSON format
[DataContract]
public class TextMessage
{
// automatic property message
[DataMember]
public string Message {get; set; }
} // end class TextMessage

Fig. 28.14 | WCF web-service interface that returns a welcome
message through REST architecture and J]SON format. (Part 2 of 2.)

I // Fig. 28.15: WelcomeRESTJSONService.cs

2 // WCF web service that returns a welcome message through REST
3 // architecture and JSON format.

4 public class WelcomeRESTISONService : IWelcomeRESTISONService
5 {

6 // returns a welcome message

7 public TextMessage Welcome(string yourName)

8 {

9 // add welcome message to field of TextMessage object
10 TextMessage message = new TextMessage();
11 message.Message = string.Format(
12
13 yourName);
14 return message;
15 } // end method Welcome

16 } // end class WelcomeRESTISONService

Fig. 28.15 | WCF web service that returns a welcome message
through REST architecture and JSON format.

*"|Paul - Notepad
File Edit Format View Help

{"Message”:"welcome to WCF web Services with REST and JSON, Paul!"}
4

Fig. 28.16 | Response from WelcomeRESTISONService in [SON
data format.

I // Fig. 28.17: WelcomeRESTISONForm.cs

2 // Client that consumes the WelcomeRESTISONService.
3 using System;

4 using System.IO;

5 using System.Net;

6 using System.Runtime.Serialization.Json;

7 using System.Text;

8 using System.Windows.Forms;

9
10 namespace WelcomeRESTISONClient
11 {
12 public partial class WelcomeRESTISONForm : Form
13 {
14 // object to invoke the WelcomeRESTISONService
I5 private WebClient client = new WebClient();
16

Fig. 28.17 | Client that consumes the WelcomeRESTISONService.
(Part | of 4.)

17 public WelcomeRESTISONForm()

I8 {

19 InitializeComponent();

20

21 // add DownloadStringCompleted event handler to WebClient
22 client.DownloadStringCompleted+=

23 new DownloadStringCompletedEventHandler(

24 client_DownloadStringCompleted);

25 } // end constructor

26

27 // get user input and pass it to the web service

28 private void submitButton_Click(object sender, EventArgs e)
29 {

30 // send request to WelcomeRESTISONService

31 client.DownloadStringAsync(new Uri(

32

33 + + textBox.Text));

34 } // end method submitButton_Click

35

Fig. 28.17 | Client that consumes the WeTcomeRESTISONService.
(Part 2 of 4.)

36 // process web service response

37 private void client_DownloadStringCompleted(

38 object sender, DownloadStringCompletedEventArgs e)

39 {

40 // check if any error occurred in retrieving service data

41 if (e.Error == null)

42 {

43 // deserialize response into a TextMessage object

44 DataContractJsonSerializer JSONSerializer =

45 new DataContractlsonSerializer(typeof(TextMessage));
46 TextMessage message =

47 (TextMessage) JSONSerializer.ReadObject(new

48 MemoryStream(Encoding.Unicode.GetBytes(e.Result)));
49

50 // display Message text

51 MessageBox.Show(message.Message,);

52 } // end if

53 } // end method client_DownloadStringCompleted

54 } // end class WelcomeRESTISONForm

55

Fig. 28.17 | Client that consumes the WelcomeRESTISONService.
(Part 3 of 4.)

56 // TextMessage class representing a JSON object

57 [Serializable]

58 public class TextMessage
59 {

60 public string Message;
61 } // end class TextMessage

62 } // end namespace WelcomeRESTISONClient

a) User inputs name. b) Message sent from WelcomeRESTISONService.

Entes your name:. | Paul Welcome to WCF Web Services with REST and JSON, Paul!

Fig. 28.17 | Client that consumes the WelcomeRESTISONService.
(Part 4 of 4.)

I // Fig. 28.18: IBlackjackService.cs

2 // Blackjack game WCF web service interface.
3 using System.ServiceModel;

4

5 [ServiceContract(SessionMode = SessionMode.Required)]
6 public interface IBlackjackService

7 {

8 // deals a card that has not been dealt
9 [OperationContract]
10 string DealCard();
11
12 // creates and shuffle the deck
13 [OperationContract]
14 void Shuffle();
15
16 // calculates value of a hand
17 [OperationContract]
18 int GetHandValue(string dealt);

19 } // end interface IBlackjackService

Fig. 28.18 | Blackjack game WCF web-service interface.

I // Fig. 28.19: BlackjackService.cs
2 // Blackjack game WCF web service.
3 using System;
4 using System.Collections.Generic;
5 using System.ServiceModel;
6
7 [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerSession)]
8 public class BlackjackService : IBlackjackService
9 {
10 // create persistent session deck of cards object
11 List< string > deck = new List< string >();
12
13 // deals card that has not yet been dealt
14 public string DealCard()
15 {
16 string card = deck[¢]; // get first card
17 deck.RemoveAt(0); // remove card from deck
18 return card;
19 } // end method DealCard
20

Fig. 28.19 | Blackjack game WCF web service. (Part | of 4.)

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

// creates and shuffles a deck of cards
public void Shuffle()

{

Random randomObject = new Random(); // generates random numbers
deck.Clear(); // clears deck for new game

// generate all possible cards
for (int face = 1; face <= ; face++) // loop through faces
for (int suit = 0; suit <= °; suit++) // loop through suits
deck.Add(face + + suit); // add card (string) to deck

// shuffles deck by swapping each card with another card randomly
for (int i = 0; i < deck.Count; i++)
{

// get random index

int newIndex = randomObject.Next(deck.Count -)5

// save current card in temporary variable
string temporary = deck[i];
deck[i] = deck[newIndex 1; // copy randomly selected card

// copy current card back into deck
deck[newIndex] = temporary;
} // end for

} // end method Shuffle

ic. 28.19 | Blackjack game WCF web service. (Part 2 of 4.)

47

48 // computes value of hand

49 public 1int GetHandValue(string dealt)

50 {

51 // split string containing all cards

52 string[] cards = dealt.Split(); // get array of cards
53 int total = 0; // total value of cards in hand
54 int face; // face of the current card

55 int aceCount = 0; // number of aces in hand

56

57 // loop through the cards in the hand

58 foreach (var card in cards)

59 {

60 // get face of card

61 face = Convert.ToInt32(

62 card.Substring(¢, card.IndexOf()))
63

64 switch (face)

65 {

66 case 1: // if ace, increment aceCount

67 ++aceCount;

68 break;

Fig. 28.19 | Blackjack game WCF web service. (Part 3 of 4.)

69 case : // if jack add 10

70 case : // if queen add 10

71 case : // if king add 10

72 total += ;

73 break;

74 default: // otherwise, add value of face
75 total += face;

76 break;

77 } // end switch

78 } // end foreach

79

80 // if there are any aces, calculate optimum total
81 if (aceCount >)

82 {

83 // if it is possible to count one ace as 11, and the rest
84 // as 1 each, do so; otherwise, count all aces as 1 each
85 if (total + + aceCount - <=)

86 total += + aceCount - 1;

87 else

88 total += aceCount;

89 } // end if

90

91 return total;

92 } // end method GetHandValue

93 1} // end class BlackjackService
Fig. 28.19 | Blackjack game WCF web service. (Part 4 of 4.)

I // Fig. 28.20: Blackjack.cs

2 // Blackjack game that uses the BlackjackService web service.
3 using System;

4 using System.Drawing;

5 using System.Windows.Forms;

6 using System.Collections.Generic;

7 using System.Resources;

8

9 namespace BlackjackClient

10 {

11 public partial class Blackjack : Form

12 {

13 // reference to web service

14 private ServiceReference.BlackjackServiceClient dealer;
15

16 // string representing the dealer's cards
17 private string dealersCards;

18

19 // string representing the player's cards
20 private string playersCards;
21
22 // 1list of PictureBoxes for card images
23 private List< PictureBox > cardBoxes;

Fig. 28.20 | Blackjack game that uses the BlackjackService web
service. (Part | of 18.)

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

private 1int currentPlayerCard; // player's current card number
private int currentDealerCard; // dealer's current card number

private ResourceManager picturelLibrary =
BlackjackClient.Properties.Resources.ResourceManager;

// enum representing the possible game outcomes
public enum GameStatus
{

, // game ends in a tie

, // player Tloses

, // player wins

// player has blackjack

} // end enum GameStatus

public Blackjack()
{

InitializeComponent();
} // end constructor

Fig. 28.20 | Blackjack game that uses the BlackjackService web
service. (Part 2 of 18.)

44 // sets up the game

45 private void Blackjack_Load(object sender, EventArgs e)
46 {

47 // instantiate object allowing communication with web service
48 dealer = new ServiceReference.BlackjackServiceClient();
49

50 // put PictureBoxes into cardBoxes List

51 cardBoxes = new List<PictureBox>(); // create 1list

52 cardBoxes.Add(pictureBoxl);

53 cardBoxes.Add(pictureBox2);

54 cardBoxes.Add(pictureBox3);

55 cardBoxes.Add(pictureBox4);

56 cardBoxes.Add(pictureBox5);

57 cardBoxes.Add(pictureBox6);

58 cardBoxes.Add(pictureBox7);

59 cardBoxes.Add(pictureBox8);

60 cardBoxes.Add(pictureBox9);

61 cardBoxes.Add(pictureBox10);

62 cardBoxes.Add(pictureBox1l);

63 cardBoxes.Add(pictureBox12);

64 cardBoxes.Add(pictureBox13);

65 cardBoxes.Add(pictureBox14);

66 cardBoxes.Add(pictureBox15);

Fig. 28.20 | Blackjack game that uses the BlackjackService web
service. (Part 3 of 18.)

67 cardBoxes.Add(pictureBox16);

68 cardBoxes.Add(pictureBox17);

69 cardBoxes.Add(pictureBox18);

70 cardBoxes.Add(pictureBox19);

71 cardBoxes.Add(pictureBox20);

72 cardBoxes.Add(pictureBox21);

73 cardBoxes.Add(pictureBox22);

74 } // end method Blackjack_Load

75

76 // deals cards to dealer while dealer's total 1s less than 17,
77 // then computes value of each hand and determines winner
78 private void DealerPlay()

79 {

80 // reveal dealer's second card

81 string[] cards = dealersCards.SpTit();

82 DisplayCard(1, cards[!]);

83

84 string nextCard;

85

86 // while value of dealer's hand is below 17,

87 // dealer must take cards

88 while (dealer.GetHandValue(dealersCards) <)
89 {

Fig. 28.20 | Blackjack game that uses the BlackjackService web
service. (Part 4 of 18.)

90
91
92
93
94
95
96
97
98
929
100
101
102
103
104
105
106
107
108
109
110
111
112

nextCard = dealer.DealCard(); // deal new card
dealersCards += + nextCard; // add new card to hand

// update GUI to show new card
MessageBox. Show()3
DisplayCard(currentDealerCard, nextCard);
++currentDealerCard;

} // end while

int dealersTotal dealer.GetHandValue(dealersCards);
int playersTotal = dealer.GetHandValue(playersCards);

// if dealer busted, player wins
if (dealersTotal >)

{
GameOver();
} // end if
else
{
// if dealer and player have not exceeded 21,
// higher score wins; equal scores 1is a push.
if (dealersTotal > playersTotal) // player Toses game
GameOver();

Fig. 28.20 | Blackjack game that uses the BlackjackService web
service. (Part 5 of 18.)

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

else if (playersTotal > dealersTotal) // player wins game

GameOver();
else // player and dealer tie
GameOver()

} // end else
} // end method DealerPlay

// displays card represented by cardValue in specified PictureBox
public void DisplayCard(int card, string cardValue)
{

// retrieve appropriate PictureBox

PictureBox displayBox = cardBoxes[card];

// if string representing card is empty,
// set displayBox to display back of card
if (string.IsNul1OrEmpty(cardValue))

{
displayBox.Image =
(Image) pictureLibrary.GetObject();
return;
} // end if

Fig. 28.20 | Blackjack game that uses the BlackjackService web
service. (Part 6 of 18.)

135 // retrieve face value of card from cardValue

136 string face =

137 cardValue.Substring(0, cardValue.IndexOf())
138

139 // retrieve the suit of the card from cardValue

140 string suit =

141 cardvalue.Substring(cardValue.IndexOf() + 1)
142

143 char suitLetter; // suit letter used to form image file name
144

145 // determine the suit Tetter of the card

146 switch (Convert.ToInt32(suit))

147 {

148 case 0: // clubs

149 suitLetter = ;

150 break;

151 case 1: // diamonds

152 suitLetter = ;

153 break;

154 case 2: // hearts

155 suitLetter = ;

156 break;

Fig. 28.20 | Blackjack game that uses the BlackjackService web
service. (Part 7 of 18.)

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

default: // spades
suitLetter = ;

break;
} // end switch

// set displayBox to display appropriate image
displayBox.Image = (Image) picturelLibrary.GetObject(
+ face + suitLetter);
} // end method DisplayCard

// displays all player cards and shows
// appropriate game status message
public void GameOver(GameStatus winner)

{
string[] cards = dealersCards.SpTit();

// display all the dealer's cards
for (int i = 0; i < cards.Length; i++)
DisplayCard(i, cards[i]);

Fig. 28.20 | Blackjack game that uses the BlackjackService web
service. (Part 8 of 18.)

177 // display appropriate status image

178 if (winner ==) // push

179 statusPictureBox.Image =

180 (Image) picturelLibrary.GetObject();
181 else if (winner ==) // player Tloses
182 statusPictureBox.Image =

183 (Image) pictureLibrary.GetObject()
184 else if (winner ==)

185 // player has blackjack

186 statusPictureBox.Image =

187 (Image) picturelLibrary.GetObject(

188 else // player wins

189 statusPictureBox.Image =

190 (Image) picturelLibrary.GetObject();
191

192 // display final totals for dealer and player

193 dealerTotalLabel.Text =

194 + dealer.GetHandValue(dealersCards);
195 playerTotalLabel.Text =

196 + dealer.GetHandValue(playersCards);
197

Fig. 28.20 | Blackjack game that uses the BlackjackService web
service. (Part 9 of 18.)

198 // reset controls for new game

199 stayButton.Enabled = false;

200 hitButton.Enabled = false;

201 dealButton.Enabled = true;

202 } // end method GameOver

203

204 // deal two cards each to dealer and player

205 private void dealButton_Click(object sender, EventArgs e)
206 {

207 string card; // stores a card temporarily until added to a hand
208

209 // clear card images

210 foreach (PictureBox cardImage in cardBoxes)

211 cardImage.Image = null;

212

213 statusPictureBox.Image = null; // clear status image

214 dealerTotalLabel.Text = i // clear dealer total
215 playerTotallLabel.Text = ; // clear player total
216

217 // create a new, shuffled deck on the web service host

218 dealer.Shuffle();

219

Fig. 28.20 | Blackjack game that uses the BlackjackService web
service. (Part 10 of 18.)

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

// deal two cards to player
playersCards = dealer.DealCard(); // deal first card to player

DisplayCard(, playersCards); // display card

card = dealer.DealCard(); // deal second card to player
DisplayCard(, card); // update GUI to display new card
playersCards += + card; // add second card to player's hand

// deal two cards to dealer, only display face of first card
dealersCards = dealer.DealCard(); // deal first card to dealer
DisplayCard(0, dealersCards); // display card

card = dealer.DealCard(); // deal second card to dealer
DisplayCard(!,); // display card face down
dealersCards += + card; // add second card to dealer's hand

stayButton.Enabled = true; // allow player to stay
hitButton.Enabled = true; // allow player to hit
dealButton.Enabled = false; // disable Deal Button

// determine the value of the two hands
int dealersTotal = dealer.GetHandValue(dealersCards);
int playersTotal dealer.GetHandValue(playersCards);

Fig. 28.20 | Blackjack game that uses the BlackjackService web
service. (Part 11 of 18.)

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

// if hands equal 21, it is a push

if (dealersTotal == playersTotal && dealersTotal ==)
GameOver();

else if (dealersTotal ==) // if dealer has 21, dealer wins
GameOver();

else if (playersTotal ==) // player has blackjack

GameOver();

// next dealer card has index 2 in cardBoxes
currentDealerCard = 7;

// next player card has index 13 in cardBoxes
currentPlayerCard = ;
} // end method dealButton

// deal another card to player

private void hitButton_Click(object sender, EventArgs e)

{
string card = dealer.DealCard(); // deal new card
playersCards += + card; // add new card to player's hand

DisplayCard(currentPlayerCard, card); // display card
++currentPlayerCard;

Fig. 28.20 | Blackjack game that uses the BlackjackService web
service. (Part 12 of 18.)

265

266 // determine the value of the player's hand

267 int total = dealer.GetHandValue(playersCards);

268

269 // it player exceeds 21, house wins

270 if (total >)

271 GameOver();

272 else if (total ==) // if player has 21, dealer's turn
273 {

274 hitButton.Enabled = ;

275 DealerPlay(Q);

276 } // end if

277 } // end method hitButton_Click

278

279 // play the dealer's hand after the player chooses to stay
280 private void stayButton_Click(object sender, EventArgs e)
281 {

282 stayButton.Enabled = false; // disable Stay Button

283 hitButton.Enabled = false; // disable Hit Button

284 dealButton.Enabled = true; // enable Deal Button

285 DealerPlay(); // player chose to stay, so play the dealer's hand
286 } // end method stayButton_Click

287 } // end class Blackjack

288 } // end namespace BlackjackClient

Fig. 28.20 | Blackjack game that uses the BlackjackService web
service. (Part 13 of 18.)

a) Initial cards dealt to the player and the dealer when the user presses the Deal button.
B B W Y
DEALE

0

X
()
'Y)
XD

PLAYER

Fig. 28.20 | Blackjack game that uses the BlackjackService web
ice. (Part 14 of 18.)

b) Cards after the player presses the Hit button once, then the Stay button. In this
case, the player wins the game with a higher total than the dealer.

o e W N
DEALER

7
L X) : L
e

Hit

PLAYER

i ﬂ You Wln!
L A J
‘ 83 i Dealer: 17

Player: 20

Fig. 28.20 | Blackjack game that uses the BlackjackService web
Part 15 of 18.)

c) Cards after the player presses the Hit button once, then the Stay button. In this
case, the player busts (exceeds 21) and the dealer wins the game.

-
DEALE

S ; » > k

Hit

PLAYER You Lose

E ‘ ; Try again!
L Dealer: 12

Player: 25

Fig. 28.20 | Blackjack game that uses the BlackjackService web
' art 16 of 18.)

d) Cards after the player presses the Deal button. In this case, the player wins with Blackjack
because the first two cards are an ace and a card with a value of 10 (a jack in this case).

Fr T W
DEALER

E JE@;:‘ H

Hit

PLAYER

- Blackjack!
E n
= Dealer: 16

Player: 21

Fig. 28.20 | Blackjack game that uses the BlackjackService web
Part 17 of 18.)

e) Cards after the player presses the Stay button. In this case, the player and dealer

push—they have the same card total.

DEALER

PLAYER

ex 1Y

4]

T T W

Hit

It's a tie!

Dealer: 21
Player: 21

Fig. 28.20 | Blackjack game that uses the BlackjackService web

Part 18 of 18.)

// Fig. 28.21: IReservationService.cs
// Airline reservation WCF web service interface.
using System.ServiceModel;

[ServiceContract]
public interface IReservationService
{
// reserves a seat
[OperationContract]
bool Reserve(string seatType, string classType);
} // end interface IReservationService

-0 Vo ~NONWNE WN =

Fig. 28.21 | Airline reservation WCF web-service interface.

I // Fig. 28.22: ReservationService.cs

2 // Airline reservation WCF web service.

3 using System.Ling;

4

5 public class ReservationService : IReservationService

6 {

7 // create ticketsDB object to access Tickets database

8 private TicketsDataContext ticketsDB = new TicketsDataContext();
9

10 // checks database to determine whether matching seat is available
11 public bool Reserve(string seatType, string classType)

12 {

13 // LINQ query to find seats matching the parameters

14 var result =

15 from seat in ticketsDB.Seats

16 where (seat.Taken == false) && (seat.Type == seatType) &&
17 (seat.Class == classType)

18 select seat;

19
20 // get first available seat
21 Seat firstAvailableSeat = result.FirstOrDefault();
22

Fig. 28.22 | Airline reservation WCF web service. (Part | of 2.)

23 // if seat is available seats, mark it as taken

24 if (firstAvailableSeat != null)

25 {

26 firstAvailableSeat.Taken = true; // mark the seat as taken
27 ticketsDB.SubmitChanges(); // update

28 return true; // seat was reserved

29 } // end if

30

31 return false; // no seat was reserved

32 } // end method Reserve

33 1} // end class ReservationService

Fig. 28.22 | Airline reservation WCF web service. (Part 2 of 2.)

(@ Ticket Reservation - Windows Internet Explorer i)\l M
@6 v |ﬂ http://localhost:49232/ReservationClient/ReservationClient.aspx + | “1‘ X | | Google L "|
[B v B v @ v Rage v Glook~

¢ 47 | @8 Ticket Reservation

m

Please select the seat type and class to reserve:

Window - Economy ~ Res

|~L & Internet | Protected Mode: Off
= — — —

Fig. 28.23 | ASPX file that takes reservation information.

®100% v

I

I // Fig. 28.24: ReservationClient.aspx.cs

2 // ReservationClient code behind file.

3 using System;

4

5 public partial class ReservationClient : System.Web.UI.Page

6 {

7 // object of proxy type used to connect to ReservationService
8 private ServiceReference.ReservationServiceClient ticketAgent =
9 new ServiceReference.ReservationServiceClient();

10

11 // attempt to reserve the selected type of seat

12 protected void reserveButton_Click(object sender, EventArgs e)
13 {

14 // if the ticket is reserved

15 if (ticketAgent.Reserve(seatlList.SelectedItem.Text,

16 classList.SelectedItem.Text))

17 {

18 // hide other controls

19 instructionsLabel.Visible = false;
20 seatlList.Visible = false;
21 classList.Visible = false;
22 reserveButton.Visible = false;
23 errorLabel.Visible = false;
24

Fig. 28.24 | ReservationClient code-behind file. (Part | of 2.)

25
26
27
28
29
30
31
32
33
34
35

// display message indicating success
Response.Write(

} // end if
else // service method returned false, so signal failure
{

// display message in the initially blank errorLabel
errorLabel.Text =

} // end else
} // end method reserveButton_Click
} // end class ReservationClient

Fig. 28.24 | ReservationClient code-behind file. (Part 2 of 2.)

a) Selecting a seat

([

(@ Ticket Reservation - Windows Internet Explorer

@@ > 1& http://localhost:49232/ReservationClient/ReservationClient.aspx v | 4y | X ‘ r Google

=

W [encket Reservation {_]

ﬁv - @'BE&Q&'@TQO'S'”

Please select the seat type and class to reserve:

Res:

Window - Economy -

RS

q

€ Internet | Protected Mode: Off

L =i

#100% v

b) Seat is reserved successfully

[E=E=)

(@ Ticket Reservation - Windows Internet Explorer

o |

@ O - Wg‘ http://localhost:49232/ReservationClient/ReservationClient.aspx | ‘1‘ X ‘ { Google

>

DA [gmm Reservation F‘]

B~ B v & v |)Page v ook~

Your reservation has been made. Thank you.

i

«

H100% v

|5Ene € Internet | Protected Mode: OFf
| - .

Fig. 28.25 | Ticket reservation web-application sample execution.
(Part | of 2.)

c) Attempting to reserve another seat

@ Ticket Reservation - Windows Internet Explorer [E=EE)
@ O =]g‘, http://localhost:49232/ReservationClient/ReservationClient.aspx | +3 | X ‘ ’ Google pel v‘
T¢ & | @ Ticket Reservation]—‘ By v~ E) v #® v |Page v {JTooks v

Please select the seat type and class to reserve:

Aisle - Economy ~ Reserve ' -

€ Internet | Protected Mode: Off #100% v

Done

d) No seats match the requested type and class

{& Ticket Reservation - Windows Internet Explorer n @QE
@ O 7 \g, http://localhost:49232/ReservationClient/ReservationClient.aspx v | +4 | x ‘ ! Google Fel v’
W 4t | @ Ticket Reservation I_‘ - v e v [2h Page v {J Tools v

-~

Please select the seat type and class to reserve:

Window - Economy ~ Reserve
This type of seat is not available. Please modify your
request and try again_

Done

& Internet | Protected Mode: Off ®100% v

— —

Fig. 28.25 | Ticket reservation web-application sample execution.
(Part 2 of 2.)

VoOo~NONWNDE WN =

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// Fig. 28.26: Equation.cs
// Class Equation that contains information about an equation.
using System.Runtime.Serialization;

[DataContract]
public class Equation

{

// automatic property to access the left operand
[DataMember]
private int Left { get; set; }

// automatic property to access the right operand
[DataMember]
private int Right { get; set; }

// automatic property to access the result of applying
// an operation to the left and right operands
[DataMember]

private int Result { get; set; }

// automatic property to access the operation
[DataMember]
private string Operation { get; set; }

Fig. 28.26 | Class equation that contains information about an
equation. (Part | of 4.)

24

25 // required default constructor

26 public Equation()

27 : this(0, 0,)

28 {

29 // empty body

30 } // end default constructor

31

32 // three-argument constructor for class Equation
33 public Equation(1int leftValue, int rightValue, string type)
34 {

35 Left = leftValue;

36 Right = rightValue;

37

38 switch (type) // perform appropriate operation
39 {

40 case : // addition

41 Result = Left + Right;

42 Operation = ;

43 break;

44 case : // subtraction

45 Result = Left - Right;

46 Operation = ;

47 break;

Fig. 28.26 | Class Equation that contains information about an
equation. (Part 2 of 4.)

48 case : // multiplication

49 Result = Left * Right;

50 Operation = ;

51 break;

52 } // end switch

53 } // end three-argument constructor

54

55 // return string representation of the Equation object

56 public override string ToString()

57 {

58 return string.Format(, Left, Operation,
59 Right, Result);

60 } // end method ToString

61

62 // property that returns a string representing left-hand side
63 [DataMember]

64 private string LeftHandSide

65 {

66 get

67 {

68 return string.Format(, Left, Operation, Right);
69 } // end get

Fig. 28.26 | Class Equation that contains information about an
equation. (Part 3 of 4.)

70 set

71 {

72 // empty body

73 } // end set

74 } // end property LeftHandSide
75

76 // property that returns a string representing right-hand side
77 [DataMember]

78 private string RightHandSide
79 {

80 get

8l {

82 return Result.ToString(Q);
83 } // end get

84 set

85 {

86 // empty body

87 } // end set

88 } // end property RightHandSide

89 } // end class Equation

Fig. 28.26 | Class Equation that contains information about an
equation. (Part 4 of 4.)

I // Fig. 28.27: IEquationGeneratorService.cs

2 // WCF REST service interface to create random equations based on a
3 // specified operation and difficulty level.

4 using System.ServiceModel;

5 using System.ServiceModel.Web;

6

7 [ServiceContract]

8 public interface IEquationGeneratorService

9 {
10 // method to generate a math equation
11 [OperationContract]
12 [WebGet(UriTemplate =)]
13 Equation GenerateEquation(string operation, string level);

14 } // end interface IEquationGeneratorService

Fig. 28.27 | WCEF REST service interface to create random equations
based on a specified operation and difficulty level.

I // Fig. 28.28: EquationGeneratorService.cs

2 // WCF REST service to create random equations based on a

3 // specified operation and difficulty level.

4 using System;

5

6 public class EquationGeneratorService : IEquationGeneratorService

7 {

8 // method to generate a math equation

9 public Equation GenerateEquation(string operation, string level)
10 {
11 // calculate maximum and minimum number to be used
12 int maximum =
13 Convert.ToInt32(Math.Pow(, Convert.ToInt32(Tevel)));
14 int minimum =
15 Convert.ToInt32(Math.Pow(, Convert.ToInt32(level) -));
16
17 Random randomObject = new Random(); // generate random numbers
18

Fig. 28.28 | WCF REST service to create random equations based on
a specified operation and difficulty level. (Part I of 2.)

19 // create Equation consisting of two random

20 // numbers in the range minimum to maximum

21 Equation newEquation = new Equation(

22 randomObject.Next(minimum, maximum),

23 randomObject.Next(minimum, maximum), operation);
24

25 return newEquation;

26 } // end method GenerateEquation

27 1} // end class EquationGeneratorService

Fig. 28.28 | WCF REST service to create random equations based on
a specified operation and difficulty level. (Part 2 of 2.)

VoOo~NONWNDE WN =

10
11
12
13
14
15
16
17
18
19
20
21

// Fig. 28.29: MathTutor.cs

// Math tutor using EquationGeneratorServiceXML to create equations.
using System;

using System.Net;

using System.Windows.Forms;

using System.Xml.Ling;

namespace MathTutorXML

{
public partial class MathTutor : Form
{
private string operation = i // the default operation
private int level = 1; // the default difficulty level

private string leftHandSide; // the left side of the equation
private int result; // the answer
private XNamespace xmlNamespace =

XNamespace.Get()

// object used to invoke service
private WebClient service = new WebClient();

Fig. 28.29 | Math tutor using EquationGeneratorServiceXML to
create equations. (Part | of 9.)

22 public MathTutor()

23 {

24 InitializeComponent();

25

26 // add DownloadStringCompleted event handler to WebClient
27 service.DownTloadStringCompleted +=

28 new DownloadStringCompletedEventHandler(

29 service_DownloadStringCompleted);

30 } // end constructor

31

32 // generates new equation when user clicks button

33 private void generateButton_Click(object sender, EventArgs e)
34 {

35 // send request to EquationGeneratorServiceXML

36 service.DownloadStringAsync(new Uri(

37 +
38 + operation + + level));
39 } // end method generateButton_Click

40

Fig. 28.29 | Math tutor using EquationGeneratorServiceXML to
create equations. (Part 2 of 9.)

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

// process web service response
private void service_DownloadStringCompleted(
object sender, DownloadStringCompletedEventArgs e)

{

// check if any errors occurred in retrieving service data
if (e.Error == null)

{

// parse response and get LeftHandSide and Result values
XDocument xmlResponse = XDocument.Parse(e.Result);
TeftHandSide = xmlResponse.ETement(
xmlNamespace +) .ETement(
xmlNamespace +).Value;
result = Convert.ToInt32(xmlResponse.Element(
xmINamespace +).Element(
xmINamespace +).Value);

// display left side of equation

questionLabel.Text = leftHandSide;

okButton.Enabled = true; // enable okButton
answerTextBox.Enabled = true; // enable answerTextBox

} // end if
} // end method client_DownloadStringCompleted

Fig. 28.29 | Math tutor using EquationGeneratorServiceXML to
create equations. (Part 3 of 9.)

64 // check user's answer

65 private void okButton_Click(object sender, EventArgs e)

66 {

67 if (!string.IsNullOrEmpty(answerTextBox.Text))

68 {

69 // get user's answer

70 int userAnswer = Convert.ToInt32(answerTextBox.Text);
71

72 // determine whether user's answer is correct

73 if (result == userAnswer)

74 {

75 questionlLabel.Text = ; // clear question
76 answerTextBox.Clear(); // clear answer

77 okButton.Enabled = false; // disable OK button

78 MessageBox.Show(,);
79 } // end if

80 else

8l {

82 MessageBox.Show(,);
83 } // end else

84 } // end if

85 } // end method okButton_Click

86

Fig. 28.29 | Math tutor using EquationGeneratorServiceXML to
create equations. (Part 4 of 9.)

87 // set the operation to addition

88 private void additionRadioButton_CheckedChanged(object sender,
89 EventArgs e)

90 {

91 if (add1t1onRad1oButton Checked)

92 operation =

93 } // end method add1t1onRad1oButton _CheckedChanged

94

95 // set the operation to subtraction

96 private void subtractionRadioButton_CheckedChanged(object sender,
97 EventArgs e)

98 {

99 if (subtract1onRad1oButton Checked)

100 operation =

101 } // end method subtract1onRad1oButton _CheckedChanged
102

103 // set the operation to multiplication

104 private void multiplicationRadioButton_CheckedChanged(
105 object sender, EventArgs e)

106 {

107 if (mu1t1p11cat1onRad1oButton Checked)

108 operation =

109 } // end method mu1t1p11cat1onRad1oButton CheckedChanged

Fig. 28.29 | Math tutor using EquationGeneratorServiceXML to
create equations. (Part 5 of 9.)

110

111 // set difficulty Tevel to 1

112 private void TevelOneRadioButton_CheckedChanged(object sender,
113 EventArgs e)

114 {

115 if (levelOneRadioButton.Checked)

116 Tevel = 1;

117 } // end method TevelOneRadioButton_CheckedChanged

118

119 // set difficulty Tevel to 2

120 private void levelTwoRadioButton_CheckedChanged(object sender,
121 EventArgs e)

122 {

123 if (TevelTwoRadioButton.Checked)

124 Tevel = 7;

125 } // end method TevelTwoRadioButton_CheckedChanged

126

Fig. 28.29 | Math tutor using EquationGeneratorServiceXML to
create equations. (Part 6 of 9.)

127 // set difficulty Tevel to 3

128 private void levelThreeRadioButton_CheckedChanged(object sender,
129 EventArgs e)

130 {

131 if (TevelThreeRadioButton.Checked)

132 Tevel =

133 } // end method TevelThreeRadioButton_CheckedChanged

134 } // end class MathTutor

135 } // end namespace MathTutorXML

Fig. 28.29 | Math tutor using EquationGeneratorServiceXML to
create equations. (Part 7 of 9.)

a) Generating a level | addition equation

| 1+4

0K
Operation
@ Addition @ Subfraction © Multiplication
Generate
Difficulty Example
@ Level1 © Level2 @ Level3 [}

b) Answering the question incorrectly

mm— |

‘ 1+4 | = |7 | OK D Incorrect. Try again.
Operation
@ Addition © Subtraction © Multiplication

Generate
Example

Difficulty
@ Level1 © Level2 © Level3

Fig. 28.29 | Math tutor using EquationGeneratorServiceXML to
create equations. (Part 8 of 9.)

c) Answering the question correctly

| 144 ‘ =[5 oK C] Cowedt! Good job!

Operation

@ Addition © Subfraction © Multiplication
Generate L3

Difficulty Example

@ Levell) Level2 © Level3

Fig. 28.29 | Math tutor using EquationGeneratorServiceXML to
create equations. (Part 9 of 9.)

I // Fig. 28.30: IEquationGeneratorService.cs

2 // WCF REST service interface to create random equations based on a
3 // specified operation and difficulty level.

4 using System.ServiceModel;

5 using System.ServiceModel.Web;

6

7 [ServiceContract]

8 public interface IEquationGeneratorService

9 {
10 // method to generate a math equation
11 [OperationContract]
12 [WebGet(ResponseFormat = WebMessageFormat.Json,
13 UriTemplate =)]
14 Equation GenerateEquation(string operation, string Tlevel);

I5 } // end interface IEquationGeneratorService

Fig. 28.30 | WCF REST service interface to create random equations
based on a specified operation and difficulty level.

I // Fig. 28.31: MathTutorForm.cs

2 // Math tutor using EquationGeneratorServicelSON to create equations.
3 using System;

4 using System.IO;

5 using System.Net;

6 using System.Runtime.Serialization.Json;

7 using System.Text;

8 using System.Windows.Forms;

9

10 namespace MathTutorJSON

| {

12 public partial class MathTutorForm : Form

13 {

14 private string operation = ; // the default operation

15 private int level = 1; // the default difficulty level

16 private Equation currentEquation; // represents the Equation
17

18 // object used to invoke service

19 private WebClient service = new WebClient();
20

Fig. 28.31 | Math tutor using EquationGeneratorService]SON.
(Part 1 of 9.)

21 public MathTutorForm()

22 {

23 InitializeComponent();

24

25 // add DownloadStringCompleted event handler to WebClient
26 service.DownloadStringCompleted +=

27 new DownloadStringCompletedEventHandler(

28 service_DownloadStringCompleted);

29 } // end constructor

30

31 // generates new equation when user clicks button

32 private void generateButton_Click(object sender, EventArgs e)
33 {

34 // send request to EquationGeneratorServicelSON

35 service.DownloadStringAsync(new Uri(

36 +
37 + operation + + level));
38 } // end method generateButton_Click

39

Fig. 28.31 | Math tutor using EquationGeneratorServiceJSON.
(Part 2 of 9.)

40 // process web service response

41 private void service_DownloadStringCompleted(

42 object sender, DownloadStringCompletedEventArgs e)

43 {

44 // check if any errors occurred in retrieving service data
45 if (e.Error == null)

46 {

47 // deserialize response into an Equation object

48 DataContractlsonSerializer JSONSerializer =

49 new DataContractJsonSerializer(typeof(Equation));
50 currentEquation =

51 (Equation) JSONSerializer.ReadObject(new

52 MemoryStream(Encoding.Unicode.GetBytes(e.Result)));
53

54 // display Teft side of equation

55 questionLabel.Text = currentEquation.LeftHandSide;

56 okButton.Enabled = true; // enable okButton

57 answerTextBox.Enabled = true; // enable answerTextBox
58 } // end if

59 } // end method client_DownloadStringCompleted

60

Fig. 28.31 | Math tutor using EquationGeneratorService]SON.
(Part 3 of 9.)

61 // check user's answer

62 private void okButton_Click(object sender, EventArgs e)

63 {

64 if (!string.IsNullOrEmpty(answerTextBox.Text))

65 {

66 // determine whether user's answer 1is correct

67 if (currentEquation.Result ==

68 Convert.ToInt32(answerTextBox.Text))

69 {

70 questionlLabel.Text = i // clear question
71 answerTextBox.Clear(); // clear answer

72 okButton.Enabled = false; // disable OK button

73 MessageBox.Show(,);
74 } // end if

75 else

76 {

77 MessageBox.Show(,);
78 } // end else

79 } // end if

80 } // end method okButton_Click

8l

Fig. 28.31 | Math tutor using EquationGeneratorService]SON.
(Part 4 of 9.)

82 // set the operation to addition

83 private void additionRadioButton_CheckedChanged(object sender,
84 EventArgs e)

85 {

86 if (add1t1onRad1oButton Checked)

87 operation =

88 } // end method add1t1onRad1oButton _CheckedChanged

89

90 // set the operation to subtraction

91 private void subtractionRadioButton_CheckedChanged(object sender,
92 EventArgs e)

93 {

94 if (subtract1onRad1oButton Checked)

95 operation =

96 } // end method subtract1onRad1oButton _CheckedChanged
97

98 // set the operation to multiplication

99 private void multiplicationRadioButton_CheckedChanged(
100 object sender, EventArgs e)

101 {

102 if (mu1t1p11cat1onRad1oButton Checked)

103 operation =

104 } // end method mu1t1p11cat1onRad1oButton CheckedChanged

Fig. 28.31 | Math tutor using EquationGeneratorService]SON.
(Part 5 of 9.)

105

106 // set difficulty Tevel to 1

107 private void levelOneRadioButton_CheckedChanged(object sender,
108 EventArgs e)

109 {

110 if (levelOneRadioButton.Checked)

I Tevel = 1;

112 } // end method TevelOneRadioButton_CheckedChanged

113

114 // set difficulty Tevel to 2

115 private void levelTwoRadioButton_CheckedChanged(object sender,
116 EventArgs e)

117 {

118 if (levelTwoRadioButton.Checked)

119 level = 7;

120 } // end method levelTwoRadioButton_CheckedChanged

121

Fig. 28.31 | Math tutor using EquationGeneratorServiceJSON.
(Part 6 of 9.)

122 // set difficulty Tevel to 3

123 private void levelThreeRadioButton_CheckedChanged(object sender,
124 EventArgs e)

125 {

126 if (TevelThreeRadioButton.Checked)

127 Tevel =

128 } // end method TevelThreeRadioButton_CheckedChanged

129 } // end class MathTutorForm

130 } // end namespace MathTutor]SON

Fig. 28.31 | Math tutor using EquationGeneratorService]SON.
(Part 7 of 9.)

a) Generating a level 2 multiplication equation

Operation
© Additon ~ © Subtraction @ Multiplication

Difficulty
© Level1 @ Level2 © Level3

Generate
Example D‘

b) Answering the question incorrectly

Operation
© Addition

Difficulty
© Level1

© Subtraction @ Multiplication
Generate

Example

@ Level2 © Level3

(R—

Incorrect. Try again.

Fig. 28.31 | Math tutor using EquationGeneratorService]SON.

(Part 8 of 9.)

¢) Answering the question correctly

=

Correct! Good job!

Operation
©) Addition © Subtraction @ Multiplication

Generate
Example

Difficulty
© Level 1 @ Level2 @ Level3

Fig. 28.31 | Math tutor using EquationGeneratorServiceJSON.
(Part 9 of 9.)

VoOo~NONWNDE WN =

10
11
12
13
14
15
16
17

// Fig. 28.32: Equation.cs
// Equation class representing a JSON object.
using System;

namespace MathTutorJSON
{
[Serializable]
class Equation
{
public int Left = 0;
public string LeftHandSide = null;
public string Operation = null;
public int Result = 0;
public int Right = 0;
public string RightHandSide = null;
} // end class Equation
} // end namespace MathTutor]SON

Fig. 28.32 | Equation class representing a JSON object.

