
Internet & World Wide Web
How to Program, 5/e

Note: This chapter is a copy of Chapter 13 of our book Visual Basic
2010 How to Program. For that reason, we simply copied the
PowerPoint slides for this chapter and did not re-number them

© 1992-2011 by Pearson Education, Inc. All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 In this chapter, we introduce web-application development
with Microsoft’s ASP.NET technology.

 Web-based applications create web content for web-browser
clients.

 We present several examples that demonstrate web-
application development using Web Forms, web controls
(also called ASP.NET server controls) and Visual Basic
programming.

 Web Form files have the file-name extension .aspx and
contain the web page’s GUI.

 You customize Web Forms by adding web controls
including labels, textboxes, images, buttons and other GUI
components.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The Web Form file represents the web page that is sent
to the client browser.

 We often refer to Web Form files as ASPX files.

 An ASPX file created in Visual Studio has a
corresponding class written in a .NET language—we
use Visual Basic in this book.

 This class contains event handlers, initialization code,
utility methods and other supporting code.

 The file that contains this class is called the code-
behind file and provides the ASPX file’s programmatic
implementation.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 To develop the code and GUIs in this chapter, we used

Microsoft’s Visual Web Developer 2010 Express—a free

IDE designed for developing ASP.NET web applications.

 The full version of Visual Studio 2010 includes the

functionality of Visual Web Developer, so the instructions

we present for Visual Web Developer also apply to Visual

Studio 2010.

 The database example (Section 13.8) also requires SQL

Server 2008 Express.

 See the Before You Begin section of the book for additional

information on this software.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 In the online chapter, Web App Development: A Deeper
Look, we present several additional web-application
development topics, including:
◦ master pages to maintain a uniform look-and-feel across the

Web Forms in a web application

◦ creating password-protected websites with registration and
login capabilities

◦ using the Web Site Administration Tool to specify which
parts of a website are password protected

◦ using ASP.NET AJAX to quickly and easily improve the user
experience for your web applications, giving them
responsiveness comparable to that of desktop applications.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 In this section, we discuss what occurs when a user requests

a web page in a browser.

 In its simplest form, a web page is nothing more than an

HTML (HyperText Markup Language) document (with the

extension .html or .htm) that describes to a web browser the

document’s content and how to format it.
 HTML documents normally contain hyperlinks that link to

different pages or to other parts of the same page.

 When the user clicks a hyperlink, a web server locates the

requested web page and sends it to the user’s web browser.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Similarly, the user can type the address of a web page

into the browser’s address field and press Enter to view
the specified page.

 Web development tools like Visual Web Developer

typically use a “stricter” version of HTML called
XHTML (Extensible HyperText Markup Language).

 ASP.NET produces web pages as XHTML documents.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 URIs and URLs

◦ URIs (Uniform Resource Identifiers) identify resources on the

Internet.

◦ URIs that start with http:// are called URLs (Uniform

Resource Locators).

◦ Common URLs refer to files, directories or server-side code

that performs tasks such as database lookups, Internet searches

and business application processing.

◦ If you know the URL of a publicly available resource

anywhere on the web, you can enter that URL into a web

browser’s address field and the browser can access that
resource.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Parts of a URL

◦ A URL contains information that directs a browser to the

resource that the user wishes to access.

◦ Web servers make such resources available to web clients.

◦ Popular web servers include Microsoft’s Internet Information
Services (IIS) and Apache’s HTTP Server.
◦ Let’s examine the components of the URL

 http://www.deitel.com/books/downloads.html

◦ The http:// indicates that the HyperText Transfer Protocol

(HTTP) should be used to obtain the resource.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 HTTP is the web protocol that enables clients and

servers to communicate.

 Next in the URL is the server’s fully qualified
hostname (www.deitel.com)—the name of the web

server computer on which the resource resides.

 This computer is referred to as the host, because it

houses and maintains resources.

 The hostname www.deitel.com is translated into an

IP (Internet Protocol) address—a numerical value that

uniquely identifies the server on the Internet.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 A Domain Name System (DNS) server maintains a database of
hostnames and their corresponding IP addresses, and performs
the translations automatically.

 The remainder of the URL (/books/downloads.html)
specifies the resource’s location (/books) and name
(downloads.html) on the web server.

 The location could represent an actual directory on the web
server’s file system.

 For security reasons, however, the location is typically a virtual
directory.

 The web server translates the virtual directory into a real location
on the server, thus hiding the resource’s true location.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Making a Request and Receiving a Response

◦ When given a URL, a web browser uses HTTP to retrieve and

display the web page found at that address.

◦ Figure 13.1 shows a web browser sending a request to a web

server.

◦ Figure 13.2 shows the web server responding to that request.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Web-based applications are multitier applications

(sometimes referred to as n-tier applications).

 Multitier applications divide functionality into separate

tiers (that is, logical groupings of functionality).

 Although tiers can be located on the same computer,

the tiers of web-based applications commonly reside on

separate computers for security and scalability.

 Figure 13.3 presents the basic architecture of a three-

tier web-based application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Information Tier
◦ The information tier (also called the bottom tier) maintains the

application’s data.
◦ This tier typically stores data in a relational database

management system.

◦ For example, a retail store might have a database for storing
product information, such as descriptions, prices and quantities
in stock.

◦ The same database also might contain customer information,
such as user names, billing addresses and credit card numbers.

◦ This tier can contain multiple databases, which together
comprise the data needed for an application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Business Logic

◦ The middle tier implements business logic, controller logic and

presentation logic to control interactions between the

application’s clients and its data.
◦ The middle tier acts as an intermediary between data in the

information tier and the application’s clients.
◦ The middle-tier controller logic processes client requests (such

as requests to view a product catalog) and retrieves data from

the database.

◦ The middle-tier presentation logic then processes data from the

information tier and presents the content to the client.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Web applications typically present data to clients as web
pages.

 Business logic in the middle tier enforces business rules and
ensures that data is reliable before the server application
updates the database or presents the data to users.

 Business rules dictate how clients can and cannot access
application data, and how applications process data.

 For example, a business rule in the middle tier of a retail
store’s web-based application might ensure that all product
quantities remain positive.

 A client request to set a negative quantity in the bottom
tier’s product information database would be rejected by the
middle tier’s business logic.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Client Tier
◦ The client tier, or top tier, is the application’s user interface,

which gathers input and displays output.

◦ Users interact directly with the application through the user
interface (typically viewed in a web browser), keyboard and
mouse.

◦ In response to user actions (for example, clicking a hyperlink),
the client tier interacts with the middle tier to make requests
and to retrieve data from the information tier.

◦ The client tier then displays to the user the data retrieved from
the middle tier.

◦ The client tier never directly interacts with the information tier.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Our first example displays the web server’s time of day in a
browser window (Fig. 13.4).

 When this application executes—that is, a web browser
requests the application’s web page—the web server
executes the application’s code, which gets the current time
and displays it in a Label.

 The web server then returns the result to the web browser
that made the request, and the web browser renders the web
page containing the time.

 We executed this application in both the Internet Explorer
and Firefox web browsers to show you that the web page
renders identically in each.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Testing the Application in Your Default Web Browser

 To test this application in your default web browser,

perform the following steps:

◦ Open Visual Web Developer.

◦ Select Open Web Site… from the File menu.

◦ In the Open Web Site dialog (Fig. 13.5), ensure that File

System is selected, then navigate to this chapter’s examples,
select the WebTime folder and click the Open Button.

◦ Select WebTime.aspx in the Solution Explorer, then type

Ctrl + F5 to execute the web application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Testing the Application in a Selected Web Browser

◦ If you wish to execute the application in another web browser, you

can copy the web page’s address from your default browser’s address
field and paste it into another browser’s address field, or you can
perform the following steps:

◦ In the Solution Explorer, right click WebTime.aspx and select

Browse With… to display the Browse With dialog (Fig. 13.6).

◦ From the Browsers list, select the browser in which you’d like to
test the web application and click the Browse Button.

 If the browser you wish to use is not listed, you can use the

Browse With dialog to add items to or remove items from

the list of web browsers.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Now that you’ve tested the application, let’s create it in
Visual Web Developer.

 Step 1: Creating the Web Site Project

◦ Select File > New Web Site...

◦ to display the New Web Site dialog (Fig. 13.7).

◦ In the left column of this dialog, ensure that Visual Basic is

selected, then select Empty Web Site in the middle column.

◦ At the bottom of the dialog you can specify the location and

name of the web application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The Web location: ComboBox provides the following

options:

◦ File System: Creates a new website for testing on your local

computer. Such websites execute in Visual Web Developer’s
built-in ASP.NET Development Server and can be accessed

only by web browsers running on the same computer. You can

later “publish” your website to a production web server for
access via a local network or the Internet. Each example in this

chapter uses the File System option, so select it now.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ HTTP: Creates a new website on an IIS web server and uses HTTP
to allow you to put your website’s files on the server. IIS is
Microsoft’s software that is used to run production websites. If you
own a website and have your own web server, you might use this to
build a new website directly on that server computer. You must be an
Administrator on the computer running IIS to use this option.

◦ FTP: Uses File Transfer Protocol (FTP) to allow you to put your
website’s files on the server. The server administrator must first
create the website on the server for you. FTP is commonly used by
so-called “hosting providers” to allow website owners to share a
server computer that runs many websites.

 Change the name of the web application from WebSite1
to WebTime, then click the OK Button to create the
website.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Step 2: Adding a Web Form to the Website and Examining the
Solution Explorer
◦ A Web Form represents one page in a web application—we’ll often use

the terms “page” and “Web Form” interchangeably.
◦ A Web Form contains a web application’s GUI.

 To create the WebTime.aspx Web Form:
◦ Right click the project name in the Solution Explorer and select Add

New Item... to display the Add New Item dialog (Fig. 13.8).
◦ In the left column, ensure that Visual Basic is selected, then select Web

Form in the middle column.
◦ In the Name: TextBox, change the file name to WebTime.aspx,

then click the Add Button.

 After you add the Web Form, the IDE opens it in Source view
by default (Fig. 13.9).

 This view displays the markup for the Web Form.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 As you become more familiar with ASP.NET and

building web sites in general, you might use Source

view to perform high precision adjustments to your

design or to program in the JavaScript language that

executes in web browsers.

 For the purposes of this chapter, we’ll keep things
simple by working exclusively in Design mode.

 To switch to Design mode, you can click the Design

Button at the bottom of the code editor window.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The Solution Explorer
◦ The Solution Explorer (Fig. 13.10) shows the contents of the

website.

◦ We expanded the node for WebTime.aspx to show you its

code-behind file WebTime.aspx.vb.

◦ Visual Web Developer’s Solution Explorer contains several

buttons that differ from Visual Basic Express.

◦ The View Designer button allows you to open the Web Form

in Design mode.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The Copy Web Site button opens a dialog that allows

you to move the files in this project to another location,

such as a remote web server.

 This is useful if you’re developing the application on
your local computer but want to make it available to the

public from a different location.

 Finally, the ASP.NET Configuration button takes you

to a web page called the Web Site Administration

Tool, where you can manipulate various settings and

security options for your application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 If the ASPX file is not open in the IDE, you can open it

in Design mode three ways:

◦ double click it in the Solution Explorer

◦ select it in the Solution Explorer and click the View

Designer () Button

◦ right click it in the Solution Explorer and select View

Designer

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 To open the code-behind file in the code editor, you can

◦ double click it in the Solution Explorer

◦ select the ASPX file in the Solution Explorer, then click the

View Code () Button

◦ right click the code-behind file in the Solution Explorer and

select Open

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The Toolbox
◦ Figure 13.11 shows the Toolbox displayed in the IDE when the

project loads.

◦ Part (a) displays the beginning of the Standard list of web

controls, and part (b) displays the remaining web controls and

the list of other control groups.

◦ We discuss specific controls listed in Fig. 13.11 as they’re used
throughout the chapter.

◦ Many of the controls have similar or identical names to

Windows Forms controls presented earlier in the book.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The Web Forms Designer

◦ Figure 13.12 shows the initial Web Form in Design mode.

◦ You can drag and drop controls from the Toolbox onto the

Web Form.

◦ You can also type at the current cursor location to add so-

called static text to the web page.

◦ In response to such actions, the IDE generates the appropriate

markup in the ASPX file.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Step 3: Changing the Title of the Page

◦ Before designing the Web Form’s content, you’ll change its
title to A Simple Web Form Example.

◦ This title will be displayed in the web browser’s title bar (see
Fig. 13.4).

◦ It’s typically also used by search engines like Google and Bing
when they index real websites for searching.

◦ Every page should have a title.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 To change the title:

◦ Ensure that the ASPX file is open in Design view.

◦ View the Web Form’s properties by selecting DOCUMENT,

which represents the Web Form, from the drop-down list in the

Properties window.

◦ Modify the Title property in the Properties window by setting

it to A Simple Web Form Example.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Designing a Page

◦ Designing a Web Form is similar to designing a Windows

Form.

◦ To add controls to the page, drag-and-drop them from the

Toolbox onto the Web Form in Design view.

◦ The Web Form and each control are objects that have

properties, methods and events.

◦ You can set these properties visually using the Properties

window or programmatically in the code-behind file.

◦ You can also type text directly on a Web Form at the cursor

location.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Controls and other elements are placed sequentially on

a Web Form one after another in the order in which you

drag-and-drop them onto the Web Form.

 The cursor indicates the insertion point in the page.

 If you want to position a control between existing text

or controls, you can drop the control at a specific

position between existing page elements.

 You can also rearrange controls with drag-and-drop

actions in Design view.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The positions of controls and other elements are
relative to the Web Form’s upper-left corner.

 This type of layout is known as relative positioning and
it allows the browser to move elements and resize them
based on the size of the browser window.

 Relative positioning is the default, and we’ll use it
throughout this chapter.

 For precise control over the location and size of
elements, you can use absolute positioning in which
controls are located exactly where you drop them on
the Web Form.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 If you wish to use absolute positioning:

◦ Select Tools > Options…., to display the Options dialog.

◦ If it isn’t checked already, check the Show all settings

checkbox.

◦ Next, expand the HTML Designer > CSS Styling node and

ensure that the checkbox labeled Change positioning to

absolute for controls added using Toolbox, paste or drag

and drop is selected.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Step 4: Adding Text and a Label

 You’ll now add some text and a Label to the Web

Form. Perform the following steps to add the text:

◦ Ensure that the Web Form is open in Design mode.

◦ Type the following text at the current cursor location:

 Current time on the Web server:

◦ Select the text you just typed, then select Heading 2 from the

Block Format ComboBox (Fig. 13.13) to format this text as a

heading that will appear in a larger bold font. In more complex

pages, headings help you specify the relative importance of

parts of that content—like sections in a book chapter.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ Click to the right of the text you just typed and press the Enter

key to start a new paragraph in the page. The Web Form

should now appear as in Fig. 13.14.

◦ Next, drag a Label control from the Toolbox into the new

paragraph or double click the Label control in the Toolbox to

insert the Label at the current cursor position.

◦ Using the Properties window, set the Label’s (ID) property

to timeLabel. This specifies the variable name that will be

used to programmatically change the Label’s Text.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ Because, the Label’s Text will be set programmatically,

delete the current value of the Label’s Text property. When

a Label does not contain text, its name is displayed in square

brackets in Design view (Fig. 13.15) as a placeholder for

design and layout purposes. This text is not displayed at

execution time.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Step 5: Formatting the Label
◦ Formatting in a web page is performed with CSS (Cascading

Style Sheets).

◦ The details of CSS are beyond the scope of this book.

◦ However, it’s easy to use CSS to format text and elements in a
Web Form via the tools built into Visual Web Developer.

◦ In this example, we’d like to change the Label’s background
color to black, its foreground color yellow and make its text

size larger.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 To format the Label, perform the following steps:

◦ Click the Label in Design view to ensure that it’s selected.
◦ Select View > Other Windows > CSS Properties to display

the CSS Properties window at the left side of the IDE

(Fig. 13.16).

◦ Right click in the Applied Rules box and select New Style…

to display the New Style dialog (Fig. 13.17).

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ Type the new style’s name—.timeStyle—in the Selector:

ComboBox. Styles that apply to specific elements must be

named with a dot (.) preceding the name. Such a style is

called a CSS class.

◦ Each item you can set in the New Style dialog is known as a

CSS attribute. To change timeLabel’s foreground color,
select the Font category from the Category list, then select the

yellow color swatch for the color attribute.

◦ Next, change the font-size attribute to xx-large.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ To change timeLabel’s background color, select the
Background category, then select the black color swatch for

the background-color attribute.

 The New Style dialog should now appear as shown in

(Fig. 13.18).

 Click the OK Button to apply the style to the

timeLabel so that it appears as shown in Fig. 13.19.

 Also, notice that the Label’s CssClass property is

now set to timeStyle in the Properties window.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Step 6: Adding Page Logic
◦ Now you’ll write code in the code-behind file to obtain the

server’s time and display it on the Label.

◦ First, open WebTime.aspx.vb by double clicking its node
in the Solution Explorer.

◦ In this example, you’ll add an event handler to the code-behind
file to handle the Web Form’s Init event, which occurs when
the page is first requested by a web browser.

◦ The event handler for this event—named Page_Init—initializes
the page.

◦ The only initialization required for this example is to set the
timeLabel’s Text property to the time on the web server
computer.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 To create the Page_Init event handler:

◦ Select (Page Events) from the left ComboBox at the top of

the code editor window.

◦ Select Init from the right ComboBox at the top of the code

editor window.

◦ Complete the event handler by inserting the following code in

the Page_Init event handler:

 ' display the server's current time in timeLabel

timeLabel.Text = DateTime.Now.ToString("hh:mm:ss")

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Step 7: Setting the Start Page and Running the

Program

◦ To ensure that WebTime.aspx loads when you execute this

application, right click it in the Solution Explorer and select

Set As Start Page.

◦ You can now run the program in one of several ways.

◦ At the beginning of Fig. 13.4, you learned how to view the

Web Form by typing Ctrl + F5 to run the application.

◦ You can also right click an ASPX file in the Solution Explorer

and select View in Browser.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Both of these techniques execute the ASP.NET
Development Server, open your default web browser
and load the page into the browser, thus running the
web application.

 The development server stops when you exit Visual
Web Developer.

 If problems occur when running your application, you
can run it in debug mode by selecting Debug > Start
Debugging, by clicking the Start Debugging
Button () or by typing F5 to view the web page in a
web browser with debugging enabled.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 You cannot debug a web application unless debugging

is explicitly enabled in the application’s Web.config

file—a file that is generated when you create an

ASP.NET web application.

 This file stores the application’s configuration settings.
 You’ll rarely need to manually modify Web.config.

 The first time you select Debug > Start Debugging in

a project, a dialog appears and asks whether you want

the IDE to modify the Web.config file to enable

debugging.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 After you click OK, the IDE executes the application.

 You can stop debugging by selecting Debug > Stop Debugging.

 Regardless of how you execute the web application, the IDE will
compile the project before it executes.

 In fact, ASP.NET compiles your web page whenever it changes
between HTTP requests.

 For example, suppose you browse the page, then modify the ASPX file
or add code to the code-behind file.

 When you reload the page, ASP.NET recompiles the page on the server
before returning the response to the browser.

 This important behavior ensures that clients always see the latest
version of the page.

 You can manually compile an entire website by selecting Build Web
Site from the Debug menu in Visual Web Developer.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Figure 13.20 presents the code-behind file
WebTime.aspx.vb.

 Line 3 of Fig. 13.20 begins the declaration of class
WebTime.

 In Visual Basic, a class declaration can span multiple
source-code files—the separate portions of the class
declaration in each file are known as partial classes.

 The Partial modifier indicates that the code-behind file is
part of a larger class.

 Like Windows Forms applications, the rest of the class’s
code is generated for you based on your visual interactions
to create the application’s GUI in Design mode.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 That code is stored in other source code files as partial
classes with the same name.

 The compiler assembles all the partial classes that have
the same into a single class declaration.

 Line 4 indicates that WebTime inherits from class
Page in namespace System.Web.UI.

 This namespace contains classes and controls for
building web-based applications.

 Class Page represents the default capabilities of each
page in a web application—all pages inherit directly or
indirectly from this class.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Lines 7–12 define the Page_Init event handler, which
initializes the page in response to the page’s Init event.

 The only initialization required for this page is to set the
timeLabel’s Text property to the time on the web
server computer.

 The statement in line 11 retrieves the current time
(DateTime.Now) and formats it as hh:mm:ss.

 For example, 9 AM is formatted as 09:00:00, and 2:30 PM
is formatted as 02:30:00.

 As you’ll see, variable timeLabel represents an
ASP.NET Label control.

 The ASP.NET controls are defined in namespace
System.Web.UI.WebControls.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 This section introduces some of the web controls

located in the Standard section of the Toolbox

(Fig. 13.11).

 Figure 13.21 summarizes the controls used in the next

example.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 A Form Gathering User Input

◦ Figure 13.22 depicts a form for gathering user input.

◦ This example does not perform any tasks—that is, no action

occurs when the user clicks Register.

◦ As an exercise, we ask you to provide the functionality.

◦ Here we focus on the steps for adding these controls to a Web

Form and for setting their properties.

◦ Subsequent examples demonstrate how to handle the events of

many of these controls.

◦ To execute this application:

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ Select Open Web Site… from the File menu.

◦ In the Open Web Site dialog, ensure that File System is

selected, then navigate to this chapter’s examples, select the
WebControls folder and click the Open Button.

◦ Select WebControls.aspx in the Solution Explorer, then

type Ctrl + F5 to execute the web application in your default

web browser.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Create the Web Site

◦ To begin, follow the steps in Section 13.4.1 to create an Empty

Web Site named WebControls, then add a Web Form

named WebControls.aspx to the project.

◦ Set the document’s Title property to "Web Controls

Demonstration".

◦ To ensure that WebControls.aspx loads when you execute

this application, right click it in the Solution Explorer and

select Set As Start Page.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Adding the Images to the Project

◦ The images used in this example are located in the images

folder with this chapter’s examples.
◦ Before you can display images in the Web Form, they must be

added to your project.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 To add the images folder to your project:

◦ Open Windows Explorer.

◦ Locate and open this chapter’s examples folder (ch13).

◦ Drag the images folder from Windows Explorer into Visual

Web Developer’s Solution Explorer window and drop the

folder on the name of your project.

 The IDE will automatically copy the folder and its

contents into your project.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Adding Text and an Image to the Form

 Next, you’ll begin creating the page. Perform the
following steps:

◦ First create the page’s heading. At the current cursor position
on the page, type the text "Registration Form", then use

the Block Format ComboBox in the IDE’s toolbar to change
the text to Heading 3 format.

◦ Press Enter to start a new paragraph, then type the text

"Please fill in all fields and click the

Register button".

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ Press Enter to start a new paragraph, then double click the

Image control in the Toolbox. This control inserts an image

into a web page, at the current cursor position. Set the

Image’s (ID) property to userInformationImage. The

ImageUrl property specifies the location of the image to

display. In the Properties window, click the ellipsis for the

ImageUrl property to display the Select Image dialog.

Select the images folder under Project folders: to display

the list of images. Then select the image user.png.

◦ Click OK to display the image in Design view, then click to

the right of the Image and press Enter to start a new

paragraph.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Adding a Table to the Form

 Form elements are often placed in tables for layout

purposes—like the elements that represent the first name,

last name, e-mail and phone information in Fig. 13.22.

◦ Next, you’ll create a table with two rows and two columns in Design

mode.

◦ Select Table > Insert Table to display the Insert Table dialog

(Fig. 13.23). This dialog allows you to configure the table’s options.
◦ Under Size, ensure that the values of Rows and Columns are both

2—these are the default values.

◦ Click OK to close the Insert Table dialog and create the table.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 By default, the contents of a table cell are aligned

vertically in the middle of the cell.

 We changed the vertical alignment of all cells in the

table by setting the valign property to top in the

Properties window.

 This causes the content in each table cell to align with

the top of the cell.

 You can set the valign property for each table cell

individually or by selecting all the cells in the table at

once, then changing the valign property’s value.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 After creating the table, controls and text can be added

to particular cells to create a neatly organized layout.

 Next, add Image and TextBox controls to each the

four table cells as follows:

◦ Click the table cell in the first row and first column of the

table, then double click the Image control in the Toolbox. Set

its (ID) property to firstNameImage and set its

ImageUrl property to the image fname.png.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ Next, double click the TextBox control in the Toolbox. Set

its (ID) property to firstNameTextBox. As in Windows

Forms, a TextBox control allows you to obtain text from the

user and display text to the user

◦ Repeat this process in the first row and second column, but set

the Image’s (ID) property to lastNameImage and its

ImageUrl property to the image lname.png, and set the

TextBox’s (ID) property to lastNameTextBox.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ Repeat Steps 1 and 2 in the second row and first column, but

set the Image’s (ID) property to emailImage and its

ImageUrl property to the image email.png, and set the

TextBox’s (ID) property to emailTextBox.

◦ Repeat Steps 1 and 2 in the second row and second column,

but set the Image’s (ID) property to phoneImage and its

ImageUrl property to the image phone.png, and set the

TextBox’s (ID) property to phoneTextBox.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Creating the Publications Section of the Page

 This section contains an Image, some text, a

DropDownList control and a HyperLink control.

 Perform the following steps to create this section:

◦ Click below the table, then use the techniques you’ve already
learned in this section to add an Image named

publicationsImage that displays the

publications.png image.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ Click to the right of the Image, then press Enter and type the

text "Which book would you like information

about?" in the new paragraph.

◦ Hold the Shift key and press Enter to create a new line in the

current paragraph, then double click the DropDownList control

in the Toolbox. Set its (ID) property to

booksDropDownList. This control is similar to the

Windows Forms ComboBox control, but doesn’t allow users
to type text. When a user clicks the drop-down list, it expands

and displays a list from which the user can make a selection.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ You can add items to the DropDownList using the ListItem

Collection Editor, which you can access by clicking the

ellipsis next to the DropDownList’s Items property in the

Properties window, or by using the DropDownList Tasks

smart-tag menu. To open this menu, click the small arrowhead

that appears in the upper-right corner of the control in Design

mode (Fig. 13.24). Visual Web Developer displays smart-tag

menus for many ASP.NET controls to facilitate common tasks.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ Clicking Edit Items... in the DropDownList Tasks menu

opens the ListItem Collection Editor, which allows you to add

ListItem elements to the DropDownList. Add items for

"Visual Basic 2010 How to Program", "Visual C#

2008 How to Program", "Java How to Program" and

"C++ How to Program" by clicking the Add Button four

times. For each item, select it, then set its Text property to

one of the four book titles.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ Click to the right of the DropDownList and press Enter to

start a new paragraph, then double click the HyperLink control

in the Toolbox to add a hyperlink to the web page. Set its

(ID) property to booksHyperLink and its Text property

to "Click here to view more information about

our books".

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ Set the NavigateUrl property to

http://www.deitel.com. This specifies the resource or

web page that will be requested when the user clicks the

HyperLink. Setting the Target property to _blank specifies

that the requested web page should open in a new browser

window. By default, HyperLink controls cause pages to

open in the same browser window.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Completing the Page

◦ Next you’ll create the Operating System section of the page

and the Register Button.

◦ This section contains a RadioButtonList control, which

provides a series of radio buttons from which the user can

select only one.

◦ The RadioButtonList Tasks smart-tag menu provides an Edit

Items… link to open the ListItem Collection Editor so that

you can create the items in the list.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Perform the following steps:

◦ Click to the right of the HyperLink control and press Enter

to create a new paragraph, then add an Image named

osImage that displays the os.png image.

◦ Click to the right of the Image and press Enter to create a new

paragraph, then add a RadioButtonList. Set its (ID)

property to osRadioButtonList. Use the ListItem

Collection Editor to add the items shown in Fig. 13.22.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ Finally, click to the right of the RadioButtonList and

press Enter to create a new paragraph, then add a Button. A

Button web control represents a button that triggers an action

when clicked. Set its (ID) property to registerButton

and its Text property to Register. As stated earlier,

clicking the Register button in this example does not do

anything.

 You can now execute the application (Ctrl + F5) to see

the Web Form in your browser.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 This section introduces a different type of web control,
called a validation control or validator, which determines
whether the data in another web control is in the proper
format.

 For example, validators can determine whether a user has
provided information in a required field or whether a zip-
code field contains exactly five digits.

 Validators provide a mechanism for validating user input on
the client.

 When the page is sent to the client, the validator is
converted into JavaScript that performs the validation in the
client web browser.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 JavaScript is a scripting language that enhances the

functionality of web pages and is typically executed on

the client.

 Unfortunately, some client browsers might not support

scripting or the user might disable it.

 For this reason, you should always perform validation

on the server.

 ASP.NET validation controls can function on the client,

on the server or both.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Validating Input in a Web Form

◦ The Web Form in Fig. 13.25 prompts the user to enter a name,

e-mail address and phone number.

◦ A website could use a form like this to collect contact

information from visitors.

◦ After the user enters any data, but before the data is sent to the

web server, validators ensure that the user entered a value in

each field and that the e-mail address and phone-number

values are in an acceptable format.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 In this example, (555) 123-4567, 555-123-4567 and

123-4567 are all considered valid phone numbers.

 Once the data is submitted, the web server responds by

displaying a message that repeats the submitted

information.

 A real business application would typically store the

submitted data in a database or in a file on the server.

 We simply send the data back to the client to

demonstrate that the server received the data.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 To execute this application:

◦ Select Open Web Site… from the File menu.

◦ In the Open Web Site dialog, ensure that File System is

selected, then navigate to this chapter’s examples, select the
Validation folder and click the Open Button.

◦ Select Validation.aspx in the Solution Explorer, then

type Ctrl + F5 to execute the web application in your default

web browser.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 In the sample output:

◦ Fig. 13.25(a) shows the initial Web Form

◦ Fig. 13.25(b) shows the result of submitting the form before

typing any data in the TextBoxes

◦ Fig. 13.25(c) shows the results after entering data in each

TextBox, but specifying an invalid e-mail address and

invalid phone number

◦ Fig. 13.25(d) shows the results after entering valid values for

all three TextBoxes and submitting the form.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Creating the Web Site

◦ To begin, follow the steps in Section 13.4.1 to create an Empty

Web Site named Validation, then add a Web Form named

Validation.aspx to the project.

◦ Set the document’s Title property to "Demonstrating

Validation Controls".

◦ To ensure that Validation.aspx loads when you execute

this application, right click it in the Solution Explorer and

select Set As Start Page.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Creating the GUI

 To create the page, perform the following steps:

◦ Type "Please fill out all the fields in the

following form:", then use the Block Format

ComboBox in the IDE’s toolbar to change the text to Heading

3 format and press Enter to create a new paragraph.

◦ Insert a three row and two column table. You’ll add elements
to the table momentarily.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ Click below the table and add a Button. Set its (ID)

property to submitButton and its Text property to

Submit. Press Enter to create a new paragraph. By default, a

Button control in a Web Form sends the contents of the form

back to the server for processing.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ Add a Label. Set its (ID) property to outputLabel and

clear its Text property—you’ll set it programmatically when
the user clicks the submitButton. Set the

outputLabel’s Visible property to False, so the Label

does not appear in the client’s browser when the page loads for
the first time. You’ll programmatically display this Label

after the user submits valid data.

 Next you’ll add text and controls to the table you
created in Step 2 above.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Perform the following steps:

◦ In the left column, type the text "Name:" in the first row,

"E-mail:" in the second row and "Phone:" in the row

column.

◦ In the right column of the first row, add a TextBox and set its

(ID) property to nameTextBox.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ In the right column of the second row, add a TextBox and set

its (ID) property to emailTextBox. Then type the text

"e.g., email@domain.com" to the right of the

TextBox.

◦ In the right column of the third row, add a TextBox and set

its (ID) property to phoneTextBox. Then type the text

"e.g., (555) 555-1234" to the right of the TextBox.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Using RequiredFieldValidator Controls

 We use three RequiredFieldValidator controls (found in

the Validation section of the Toolbox) to ensure that

the name, e-mail address and phone number

TextBoxes are not empty when the form is submitted.

 A RequiredFieldValidator makes an input

control a required field.

 If such a field is empty, validation fails.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Add a RequiredFieldValidator as follows:

◦ Click to the right of the nameTextBox in the table and press

Enter to move to the next line.

◦ Add a RequiredFieldValidator, set its (ID) to

nameRequiredFieldValidator and set the

ForeColor property to Red.

◦ Set the validator’s ControlToValidate property to

nameTextBox to indicate that this validator verifies the

nameTextBox’s contents.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ Set the validator’s ErrorMessage property to "Please

enter your name". This is displayed on the Web Form only

if the validation fails.

◦ Set the validator’s Display property to Dynamic, so the

validator occupies space on the Web Form only when

validation fails. When this occurs, space is allocated

dynamically, causing the controls below the validator to shift

downward to accommodate the ErrorMessage, as seen in

Fig. 13.25(a)–(c).

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Repeat these steps to add two more

RequiredFieldValidators in the second and

third rows of the table.

 Set their (ID) properties to

emailRequiredFieldValidator and

phoneRequiredFieldValidator, respectively,

and set their ErrorMessage properties to "Please

enter your email address" and "Please

enter your phone number", respectively.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Using RegularExpressionValidator Controls

◦ This example also uses two RegularExpressionValidator

controls to ensure that the e-mail address and phone number

entered by the user are in a valid format.

◦ Regular expressions are beyond the scope of this book;

however, Visual Web Developer provides several predefined

regular expressions that you can simply select to take

advantage of this powerful validation control.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Add a RegularExpressionValidator as

follows:

◦ Click to the right of the

emailRequiredFieldValidator in the second row of

the table and add a RegularExpressionValidator,

then set its (ID) to

emailRegularExpressionValidator and its

ForeColor property to Red.

◦ Set the ControlToValidate property to emailTextBox

to indicate that this validator verifies the emailTextBox’s
contents.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ Set the validator’s ErrorMessage property to "Please

enter an e-mail address in a valid format".

◦ Set the validator’s Display property to Dynamic, so the

validator occupies space on the Web Form only when

validation fails.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Repeat the preceding steps to add another

RegularExpressionValidator in the third row of

the table.

 Set its (ID) property to

phoneRequiredFieldValidator and its

ErrorMessage property to "Please enter a phone

number in a valid format", respectively.

 A RegularExpressionValidator’s
ValidationExpression property specifies the regular

expression that validates the ControlToValidate’s
contents.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Clicking the ellipsis next to property

ValidationExpression in the Properties window

displays the Regular Expression Editor dialog, which

contains a list of Standard expressions for phone

numbers, zip codes and other formatted information.

 For the emailRegularExpressionValidator, we

selected the standard expression Internet e-mail address.

 If the user enters text in the emailTextBox that does not

have the correct format and either clicks in a different text

box or attempts to submit the form, the ErrorMessage

text is displayed in red.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 For the phoneRegularExpressionValidator,

we selected U.S.

 phone number to ensure that a phone number contains

an optional three-digit area code either in parentheses

and followed by an optional space or without

parentheses and followed by a required hyphen.

 After an optional area code, a phone number must

contain three digits, a hyphen and another four digits.

 For example, (555) 123-4567, 555-123-4567

and 123-4567 are all valid phone numbers.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Submitting the Web Form’s Contents to the Server
◦ If all five validators are successful (that is, each TextBox is

filled in, and the e-mail address and phone number provided

are valid), clicking the Submit button sends the form’s data to
the server.

◦ As shown in Fig. 13.25(d), the server then responds by

displaying the submitted data in the outputLabel.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Examining the Code-Behind File for a Web Form That

Receives User Input

◦ Figure 13.26 shows the code-behind file for this application.

◦ Notice that this code-behind file does not contain any

implementation related to the validators.

◦ We say more about this soon.

◦ In this example, we respond to the page’s Load event to

process the data submitted by the user.

◦ This event occurs each time the page loads into a web

browser—as opposed to the Init event, which executes only

the first time the page is requested by the user.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The event handler for this event is Page_Load (lines 7–
30).

 To create the event handler, open

Validation.aspx.vb in the code editor and

perform the following steps:

◦ Select (Page Events) from the left ComboBox at the top of

the code editor window.

◦ Select Load from the right ComboBox at the top of the code

editor window.

◦ Complete the event handler by inserting the code from

Fig. 13.26.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Differentiating Between the First Request to a Page and

a Postback

◦ Web programmers using ASP.NET often design their web

pages so that the current page reloads when the user submits

the form; this enables the program to receive input, process it

as necessary and display the results in the same page when it’s
loaded the second time.

◦ These pages usually contain a form that, when submitted,

sends the values of all the controls to the server and causes the

current page to be requested again.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 This event is known as a postback.

 Line 12 uses the IsPostBack property of class Page to

determine whether the page is being loaded due to a

postback.

 The first time that the web page is requested,

IsPostBack is False, and the page displays only

the form for user input.

 When the postback occurs (from the user clicking

Submit), IsPostBack is True.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Server-Side Web Form Validation

◦ Server-side Web Form validation must be implemented

programmatically.

◦ Line 13 calls the current Page’s Validate method to validate

the information in the request.

◦ This validates the information as specified by the validation

controls in the Web Form.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Line 15 uses the IsValid property of class Page to

check whether the validation succeeded.

 If this property is set to True (that is, validation

succeeded and the Web Form is valid), then we display

the Web Form’s information.
 Otherwise, the web page loads without any changes,

except any validator that failed now displays its

ErrorMessage.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Processing the Data Entered by the User

◦ Lines 17–19 retrieve the values of nameTextBox,

emailTextBox and phoneTextBox.

◦ When data is posted to the web server, the data that the user

entered is accessible to the web application through the web

controls’ properties.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Next, lines 22–27 set outputLabel’s Text to
display a message that includes the name, e-mail and
phone information that was submitted to the server.

 In lines 22, 23 and 26, notice the use of
 rather
than vbCrLf to start new lines in the
outputLabel—
 is the markup for a line
break in a web page.

 Line 27 sets the outputLabel’s Visible property
to True, so the user can see the thank-you message
and submitted data when the page reloads in the client
web browser.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Originally, critics accused the Internet and business of

failing to provide the customized service typically

experienced in “brick-and-mortar” stores.
 To address this problem, businesses established

mechanisms by which they could personalize users’
browsing experiences, tailoring content to individual users.

 Businesses achieve this level of service by tracking each

customer’s movement through the Internet and combining
the collected data with information provided by the

consumer, including billing information, personal

preferences, interests and hobbies.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Personalization

◦ Personalization makes it possible for businesses to

communicate effectively with their customers and also

improves users’ ability to locate desired products and services.
◦ Companies that provide content of particular interest to users

can establish relationships with customers and build on those

relationships over time.

◦ Furthermore, by targeting consumers with personal offers,

recommendations, advertisements, promotions and services,

businesses create customer loyalty.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Websites can use sophisticated technology to allow

visitors to customize home pages to suit their individual

needs and preferences.

 Similarly, online shopping sites often store personal

information for customers, tailoring notifications and

special offers to their interests.

 Such services encourage customers to visit sites more

frequently and make purchases more regularly.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Privacy

◦ A trade-off exists between personalized business service and

protection of privacy.

◦ Some consumers embrace tailored content, but others fear the

possible adverse consequences if the info they provide to

businesses is released or collected by tracking technologies.

◦ Consumers and privacy advocates ask:

◦ What if the business to which we give personal data sells or

gives that information to another organization without our

knowledge?

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 What if we do not want our actions on the Internet—a

supposedly anonymous medium—to be tracked and

recorded by unknown parties?

 What if unauthorized parties gain access to sensitive

private data, such as credit-card numbers or medical

history?

 These are questions that must be addressed by

programmers, consumers, businesses and lawmakers

alike.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Recognizing Clients

◦ To provide personalized services to consumers, businesses

must be able to recognize clients when they request

information from a site.

◦ As we have discussed, the request/response system on which

the web operates is facilitated by HTTP.

◦ Unfortunately, HTTP is a stateless protocol—it does not

provide information that would enable web servers to maintain

state information regarding particular clients.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 This means that web servers cannot determine whether

a request comes from a particular client or whether the

same or different clients generate a series of requests.

 To circumvent this problem, sites can provide

mechanisms by which they identify individual clients.

 A session represents a unique client on a website.

 If the client leaves a site and then returns later, the

client will still be recognized as the same user.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 When the user closes the browser, the session ends.

 To help the server distinguish among clients, each

client must identify itself to the server.

 Tracking individual clients is known as session

tracking.

 One popular session-tracking technique uses cookies

(discussed in Section 13.7.1); another uses ASP.NET’s
HttpSessionState object (used in Section 13.7.1).

 Additional session-tracking techniques are beyond this

book’s scope.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Cookies provide you with a tool for personalizing web
pages.

 A cookie is a piece of data stored by web browsers in a
small text file on the user’s computer.

 A cookie maintains information about the client during and
between browser sessions.

 The first time a user visits the website, the user’s computer
might receive a cookie from the server; this cookie is then
reactivated each time the user revisits that site.

 The collected information is intended to be an anonymous
record containing data that is used to personalize the user’s
future visits to the site.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 For example, cookies in a shopping application might

store unique identifiers for users.

 When a user adds items to an online shopping cart or

performs another task resulting in a request to the web

server, the server receives a cookie containing the

user’s unique identifier.
 The server then uses the unique identifier to locate the

shopping cart and perform any necessary processing.

 In addition to identifying users, cookies also can

indicate users’ shopping preferences.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 When a Web Form receives a request from a client, the

Web Form can examine the cookie(s) it sent to the

client during previous communications, identify the

user’s preferences and immediately display products of
interest to the client.

 Every HTTP-based interaction between a client and a

server includes a header containing information either

about the request (when the communication is from the

client to the server) or about the response (when the

communication is from the server to the client).

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 When a Web Form receives a request, the header

includes information such as the request type and any

cookies that have been sent previously from the server

to be stored on the client machine.

 When the server formulates its response, the header

information contains any cookies the server wants to

store on the client computer and other information,

such as the MIME type of the response.

 The expiration date of a cookie determines how long

the cookie remains on the client’s computer.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 If you do not set an expiration date for a cookie, the

web browser maintains the cookie for the duration of

the browsing session.

 Otherwise, the web browser maintains the cookie until

the expiration date occurs.

 Cookies are deleted when they expire.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The next web application demonstrates session tracking

using the .NET class HttpSessionState.

 When you execute this application, the

Options.aspx page (Fig. 13.27(a)), which is the

application’s Start Page, allows the user to select a

programming language from a group of radio buttons.

 When the user clicks Submit, the selection is sent to

the web server for processing.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The web server uses an HttpSessionState object to

store the chosen language and the ISBN number for one of

our books on that topic.

 Each user that visits the site has a unique

HttpSessionState object, so the selections made by

one user are maintained separately from all other users.

 After storing the selection, the server returns the page to the

browser (Fig. 13.27(b)) and displays the user’s selection
and some information about the user’s unique session
(which we show just for demonstration purposes).

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The page also includes links that allow the user to

choose between selecting another programming

language or viewing the Recommendations.aspx

page (Fig. 13.27(e)), which lists recommended books

pertaining to the programming language(s) that the user

selected previously.

 If the user clicks the link for book recommendations,

the information stored in the user’s unique
HttpSessionState object is read and used to form

the list of recommendations.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 To test this application:

◦ Select Open Web Site… from the File menu.

◦ In the Open Web Site dialog, ensure that File System is

selected, then navigate to this chapter’s examples, select the
Sessions folder and click the Open Button.

◦ Select Options.aspx in the Solution Explorer, then type

Ctrl + F5 to execute the web application in your default web

browser.

◦

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Creating the Web Site

◦ To begin, follow the steps in Section 13.4.1 to create an Empty

Web Site named Sessions, then add two Web Forms

named Options.aspx and Recommendations.aspx to

the project.

◦ Set the Options.aspx document’s Title property to

"Sessions" and the Recommendations.aspx

document’s Title property to "Book

Recommendations".

◦ To ensure that Options.aspx is the first page to load for

this application, right click it in the Solution Explorer and

select Set As Start Page.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The Options.aspx page Fig. 13.27(a) contains the

following controls arranged vertically:

◦ A Label with its (ID) property set to promptLabel and

its Text property set to "Select a programming

language:". We used the techniques shown in Step 5 of

Section 13.4.1 to create a CSS style for this label named

.labelStyle, and set the style’s font-size attribute to

large and the font-weight attribute to bold.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ The user selects a programming language by clicking one of

the radio buttons in a RadioButtonList. Each radio button

has a Text property and a Value property. The Text

property is displayed next to the radio button and the Value

property represents a value that is sent to the server when the

user selects that radio button and submits the form. In this

example, we’ll use the Value property to represent the ISBN

for the recommended book.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ Create a RadioButtonList with its (ID) property set to

languageList. Use the ListItem Collection Editor to add

five radio buttons with their Text properties set to Visual

Basic, Visual C#, C, C++ and Java, and their Value

properties set to 0-13-215213-4, 0-13-605322-X, 0-
13-512356-2, 0-13-611726-0 and 0-13-605306-8,

respectively

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ A Button with its (ID) property set to submitButton

and its Text property set to Submit. In this example, we’ll
handle this Button’s Click event. You can create its event

handler by double clicking the Button in Design view.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ A Label with its (ID) property set to responseLabel

and its Text property set to "Welcome to Sessions!".

This Label should be placed immediately to the right of the

Button so that the Label appears at the top of the page

when we hide the preceding controls on the page. Reuse the

CSS style you created in Step 1 by setting this Label’s
CssClass property to labelStyle.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ Two more Labels with their (ID) properties set to

idLabel and timeoutLabel, respectively. Clear the text

in each Label’s Text property—you’ll set these
programmatically with information about the current user’s
session.

◦ A HyperLink with its (ID) property set to

languageLink and its Text property set to "Click here

to choose another language". Set its NavigateUrl

property by clicking the ellipsis next to the property in the

Properties window and selecting Options.aspx from the

Select URL dialog.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ A HyperLink with its (ID) property set to

recommendationsLink and its Text property set to

"Click here to get book recommendations". Set its

NavigateUrl property by clicking the ellipsis next to the

property in the Properties window and selecting

Recommendations.aspx from the Select URL dialog.

◦ Initially, the controls in Steps 4–7 will not be displayed, so set

each control’s Visible property to False.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Session Property of a Page
◦ Every Web Form includes a user-specific

HttpSessionState object, which is accessible through

property Session of class Page.

◦ Throughout this section, we use this property to manipulate the

current user’s HttpSessionState object.

◦ When a page is first requested, a unique

HttpSessionState object is created by ASP.NET and

assigned to the Page’s Session property.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Code-Behind File for Options.aspx
◦ Fig. 13.28 presents the code-behind file for the

Options.aspx page.

◦ When this page is requested, the Page_Load event handler

(lines 9–40) executes before the response is sent to the client.

◦ Since the first request to a page is not a postback, the code in

lines 12–39 does not execute the first time the page loads.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Postback Processing

◦ When the user presses Submit, a postback occurs.

◦ The form is submitted to the server and the Page_Load event

handler executes.

◦ Lines 15–19 display the controls shown in Fig. 13.27(b) and

lines 22–24 hide the controls shown in Fig. 13.27(a).

◦ Next, lines 27–32 ensure that the user selected a language and,

if so, display a message in the responseLabel indicating

the selection.

◦ Otherwise, the message "You did not select a

language" is displayed.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The ASP.NET application contains information about the
HttpSessionState object (Session) for the current
client.

 Property SessionID (displayed in line 35) contains the
unique session ID—a sequence of random letters and
numbers.

 The first time a client connects to the web server, a unique
session ID is created for that client and a temporary cookie
is written to the client so the server can identify the client
on subsequent requests.

 When the client makes additional requests, the client’s
session ID from that temporary cookie is compared with the
session IDs stored in the web server’s memory to retrieve
the client’s HttpSessionState object.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 HttpSessionState property Timeout (displayed in

line 38) specifies the maximum amount of time that an

HttpSessionState object can be inactive before

it’s discarded.
 By default, if the user does not interact with this web

application for 20 minutes, the HttpSessionState

object is discarded by the server and a new one will be

created if the user interacts with the application again.

 Figure 13.29 lists some common

HttpSessionState properties.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Method submitButton_Click
◦ In this example, we wish to store the user’s selection in an
HttpSessionState object when the user clicks the

Submit Button.

◦ The submitButton_Click event handler (lines 43–52)

adds a key/value pair to the HttpSessionState object for

the current user, specifying the language chosen and the ISBN

number for a book on that language.

◦ The HttpSessionState object is a dictionary—a data

structure that stores key/value pairs.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 A program uses the key to store and retrieve the

associated value in the dictionary.

 We cover dictionaries in more depth in the online

Collections chapter.

 The key/value pairs in an HttpSessionState

object are often referred to as session items.

 They’re placed in an HttpSessionState object by

calling its Add method.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 If the user made a selection (line 47), lines 49–50 get

the selection and its corresponding value from the

languageList by accessing its SelectedItem’s
Text and Value properties, respectively, then call

HttpSessionState method Add to add this

name/value pair as a session item in the

HttpSessionState object (Session).

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 If the application adds a session item that has the same

name as an item previously stored in the

HttpSessionState object, the session item is

replaced—the names in session items must be unique.

 Another common syntax for placing a session item in

the HttpSessionState object is

Session(Name) = Value.

 For example, we could have replaced lines 49–50 with
 Session(languageList.SelectedItem.Text) =
 languageList.SelectedItem.Value

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 After the postback of Options.aspx, the user may

request book recommendations.

 The book-recommendations hyperlink forwards the

user to the page Recommendations.aspx

(Fig. 13.27(e)) to display the recommendations based

on the user’s language selections.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The page contains the following controls arranged

vertically:

◦ A Label with its (ID) property set to

recommendationsLabel and its Text property set to

"Recommendations:". We created a CSS style for this

label named .labelStyle, and set the font-size

attribute to x-large and the font-weight attribute to

bold. (See Step 5 in Section 13.4.1 for information on

creating a CSS style.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ A ListBox with its (ID) property set to booksListBox.

We created a CSS style for this label named

.listBoxStyle. In the Position category, we set the

width attribute to 450px and the height attribute to

125px. The px indicates that the measurement is in pixels.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ A HyperLink with its (ID) property set to

languageLink and its Text property set to "Click here

to choose another language". Set its NavigateUrl

property by clicking the ellipsis next to the property in the

Properties window and selecting Options.aspx from the

Select URL dialog. When the user clicks this link, the

Options.aspx page will be reloaded. Requesting the page

in this manner is not considered a postback, so the original

form in Fig. 13.27(a) will be displayed.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Code-Behind File for Recommendations.aspx
◦ Figure 13.30 presents the code-behind file for

Recommendations.aspx.

◦ Event handler Page_Init (lines 7–27) retrieves the session

information.

◦ If a user has not selected a language in the Options.aspx page,

the HttpSessionState object’s Count property will be 0 (line

11).

◦ This property provides the number of session items contained in a

HttpSessionState object.

◦ If the Count is 0, then we display the text No Recommendations

(line 20), clear the ListBox and hide it (lines 21–22), and update

the Text of the HyperLink back to Options.aspx (line 25).

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 If the user chose at least one language, the loop in lines
12–16 iterates through the HttpSessionState
object’s keys (line 12) by accessing the
HttpSessionState’s Keys property, which returns
a collection containing all the keys in the session.

 Lines 14–15 concatenate the keyName, the String
" How to Program.

 ISBN#: " and the key’s corresponding value, which is
returned by Session(keyName).

 This String is the recommendation that is added to
the ListBox.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Many websites allow users to provide feedback about
the website in a guestbook.

 Typically, users click a link on the website’s home page
to request the guestbook page.

 This page usually consists of a form that contains fields
for the user’s name, e-mail address, message/feedback
and so on.

 Data submitted on the guestbook form is then stored in
a database located on the server.

 In this section, we create a guestbook Web Form
application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The GUI (Fig. 13.31) contains a GridView data control,
which displays all the entries in the guestbook in
tabular format.

 This control is located in the Toolbox’s Data section.

 We explain how to create and configure this data
control shortly.

 The GridView displays abc in Design mode to
indicate data that will be retrieved from a data source at
runtime.

 You’ll learn how to create and configure the
GridView shortly.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The Guestbook Database

◦ The application stores the guestbook information in a SQL

Server database called Guestbook.mdf located on the web

server.

◦ (We provide this database in the databases folder with this

chapter’s examples.) The database contains a single table
named Messages.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Testing the Application
◦ To test this application: Select Open Web Site… from the

File menu.

◦ In the Open Web Site dialog, ensure that File System is
selected, then navigate to this chapter’s examples, select the
Guestbook folder and click the Open Button.

◦ Select Guestbook.aspx in the Solution Explorer, then
type Ctrl + F5 to execute the web application in your default
web browser.

 Figure 13.32(a) shows the user submitting a new entry.

 Figure 13.32(b) shows the new entry as the last row in
the GridView.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 We now explain how to build this GUI and set up the

data binding between the GridView control and the

database.

 Many of these steps are similar to those performed in

Chapter 12 to access and interact with a database in a

Windows application.

 We discuss the code-behind file in Section 13.8.2.

 To build the guestbook application, perform the

following steps:

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Step 1: Creating the Web Site

◦ To begin, follow the steps in Section 13.4.1 to create an Empty

Web Site named Guestbook then add a Web Form named

Guestbook.aspx to the project.

◦ Set the document’s Title property to "Guestbook".

◦ To ensure that Guestobook.aspx loads when you execute

this application, right click it in the Solution Explorer and

select Set As Start Page.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Step 2: Creating the Form for User Input

◦ In Design mode, add the text Please leave a message

in our guestbook:, then use the Block Format

ComboBox in the IDE’s toolbar to change the text to Heading

3 format.

◦ Insert a table with four rows and two columns, configured so

that the text in each cell aligns with the top of the cell.

◦ Place the appropriate text (see Fig. 13.31) in the top three cells

in the table’s left column.
◦ Then place TextBoxes named nameTextBox,

emailTextBox and messageTextBox in the top three

table cells in the right column.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Configure the TextBoxes as follows:

◦ Set the nameTextBox’s width to 300px.

◦ Set the emailTextBox’s width to 300px.

◦ Set the messageTextBox’s width to 300px and height to

100px. Also set this control’s TextMode property to

MultiLine so the user can type a message containing

multiple lines of text.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Finally, add Buttons named submitButton and

clearButton to the bottom-right table cell.

 Set the buttons’ Text properties to Submit and

Clear, respectively.

 We discuss the buttons’ event handlers when we
present the code-behind file.

 You can create these event handlers now by double

clicking each Button in Design view.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Step 3: Adding a GridView Control to the Web Form
◦ Add a GridView named messagesGridView that will display

the guestbook entries.

◦ This control appears in the Data section of the Toolbox.

◦ The colors for the GridView are specified through the Auto
Format...

◦ link in the GridView Tasks smart-tag menu that opens when you
place the GridView on the page.

◦ Clicking this link displays an AutoFormat dialog with several
choices.

◦ In this example, we chose Professional.

◦ We show how to set the GridView’s data source (that is, where it
gets the data to display in its rows and columns) shortly.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Step 4: Adding a Database to an ASP.NET Web

Application

◦ To use a SQL Server Express database file in an ASP.NET web

application, you must first add the file to the project’s
App_Data folder.

◦ For security reasons, this folder can be accessed only by the

web application on the server—clients cannot access this

folder over a network.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The web application interacts with the database on

behalf of the client.

 The Empty Web Site template does not create the

App_Data folder.

 To create it, right click the project’s name in the
Solution Explorer, then select Add ASP.NET Folder

> App_Data.

 Next, add the Guestbook.mdf file to the

App_Data folder.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 You can do this in one of two ways:

◦ Drag the file from Windows Explorer and drop it on the

App_Data folder.

◦ Right click the App_Data folder in the Solution Explorer

and select Add Existing Item… to display the Add Existing

Item dialog, then navigate to the databases folder with this

chapter’s examples, select the Guestbook.mdf file and

click Add. [Note: Ensure that Data Files is selected in the

ComboBox above or next to the Add Button in the dialog;

otherwise, the database file will not be displayed in the list of

files.]

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Step 5: Creating the LINQ to SQL Classes

◦ As in Chapter 12, you’ll use LINQ to interact with the
database.

◦ To create the LINQ to SQL classes for the Guestbook

database:

◦ Right click the project in the Solution Explorer and select

Add New Item… to display the Add New Item dialog.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ In the dialog, select LINQ to SQL Classes, enter

Guestbook.dbml as the Name, and click Add. A dialog

appears asking if you would like to put your new LINQ to SQL

classes in the App_Code folder; click Yes. The IDE will

create an App_Code folder and place the LINQ to SQL

classes information in that folder.

◦ In the Database Explorer window, drag the Guestbook

database’s Messages table from the Database Explorer

onto the Object Relational Designer. Finally, save your

project by selecting File > Save All.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Step 6: Binding the GridView to the Messages

Table of the Guestbook Database

◦ You can now configure the GridView to display the

database’s data.
◦ Open the GridView Tasks smart-tag menu, then select <New

data source...> from the Choose Data Source ComboBox

to display the Data Source Configuration Wizard dialog.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ In this example, we use a LinqDataSource control that allows

the application to interact with the Guestbook.mdf

database through LINQ. Select LINQ, then set the ID of the

data source to messagesLinqDataSource and click OK

to begin the Configure Data Source wizard.

◦ In the Choose a Context Object screen, ensure that

GuestbookDataContext is selected in the ComboBox,

then click Next >.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ The Configure Data Selection screen (Fig. 13.33) allows you

to specify which data the LinqDataSource should retrieve

from the data context. Your choices on this page design a

Select LINQ query. The Table drop-down list identifies a

table in the data context. The Guestbook data context

contains one table named Messages, which is selected by

default. If you haven’t saved your project since creating your
LINQ to SQL classes (Step 5), the list of tables will not appear.

In the Select pane, ensure that the checkbox marked with an

asterisk (*) is selected to indicate that you want to retrieve all

the columns in the Messages table.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ Click the Advanced… button, then select the Enable the

LinqDataSource to perform automatic inserts CheckBox

and click OK. This configures the LinqDataSource control

to automatically insert new data into the database when new

data is inserted in the data context. We discuss inserting new

guestbook entries based on users’ form submissions shortly.
◦ Click Finish to complete the wizard.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 A control named messagesLinqDataSource now

appears on the Web Form directly below the

GridView (Fig. 13.34).

 This control is represented in Design mode as a gray

box containing its type and name.

 It will not appear on the web page—the gray box

simply provides a way to manipulate the control

visually through Design mode—similar to how the

objects in the component tray are used in Design mode

for a Windows Forms application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The GridView now has column headers that

correspond to the columns in the Messages table.

 The rows each contain either a number (which signifies

an autoincremented column) or abc (which indicates

string data).

 The actual data from the Guestbook.mdf database

file will appear in these rows when you view the ASPX

file in a web browser.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Step 7: Modifying the Columns of the Data Source

Displayed in the GridView
◦ It’s not necessary for site visitors to see the MessageID

column when viewing past guestbook entries—this column is

merely a unique primary key required by the Messages table

within the database.

◦ So, let’s modify the GridView to prevent this column from

displaying on the Web Form.

◦ In the GridView Tasks smart tag menu, click Edit Columns

to display the Fields dialog (Fig. 13.35).

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

◦ Select MessageID in the Selected fields pane, then click the

Button. This removes the MessageID column from the

GridView.

◦ Click OK to return to the main IDE window, then set the

Width property of the GridView to 650px.

 The GridView should now appear as shown in

Fig. 13.31.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 After building the Web Form and configuring the data

controls used in this example, double click the Submit and

Clear buttons in Design view to create their corresponding

Click event handlers in the code-behind file (Fig. 13.36).

 The IDE generates empty event handlers, so we must add

the appropriate code to make these buttons work properly.

 The event handler for clearButton (lines 36–41) clears

each TextBox by setting its Text property to an empty

string.

 This resets the form for a new guestbook submission.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Lines 8–33 contain submitButton’s event-handling

code, which adds the user’s information to the
Guestbook database’s Messages table.

 To use the values of the TextBoxes on the Web Form

as the parameter values inserted into the database, we

must create a ListDictionary of insert parameters that

are key/value pairs.

 Line 12 creates a ListDictionary object.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Lines 16–19 used the ListDictionary’s Add

method to store key/value pairs that represent each of

the four insert parameters—the current date and the

user’s name, e-mail address, and message.

 Invoking the LinqDataSource method Insert

(line 24) inserts the data in the data context, adding a

row to the Messages table and automatically

updating the database.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 We pass the ListDictionary object as an

argument to the Insert method to specify the insert

parameters.

 After the data is inserted into the database, lines 27–29

clear the TextBoxes, and line 32 invokes

messagesGridView’s DataBind method to refresh

the data that the GridView displays.

 This causes messagesLinqDataSource (the

GridView’s source) to execute its Select command

to obtain the Messages table’s newly updated data.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 In the online chapter, Web App Development: A Deeper Look,
you learn the difference between a traditional web application
and an Ajax (Asynchronous JavaScript and XML) web
application.

 You also learn how to use ASP.NET AJAX to quickly and easily
improve the user experience for your web applications, giving
them responsiveness comparable to that of desktop applications.

 To demonstrate ASP.NET AJAX capabilities, you enhance the
validation example by displaying the submitted form information
without reloading the entire page.

 The only modifications to this web application appear in
Validation.aspx file.

 You use Ajax-enabled controls to add this feature.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 In the online chapter, Web App Development: A Deeper
Look, we include a web application case study in which a
user logs into a password-protected website to view a list of
publications by a selected author.

 The application consists of several pages and provides
website registration and login capabilities.

 You’ll learn about ASP.NET master pages, which allow you
to specify a common look-and-feel for all the pages in your
app.

 We also introduce the Web Site Administration Tool and
use it to configure the portions of the application that can be
accessed only by users who are logged into the website.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

