Chapter 23: Web App
Development with ASP.NET in
VB

Internet & World Wide Web

How to Program, 5/e

Note. This chapter is a copy of Chapter 13 of our book Visual Basic
2010 How to Program. For that reason, we simply copied the
PowerPoint slides for this chapter and did not re-number them

© 1992-2011 by Pearson Education, Inc. All Rights Reserved.

OBJECTIVES

In this chapter you'll learn:

= Web application development using ASP.NET.
= To handle the events from a Web Form’s controls.

= To use validation controls to ensure that data is in the correct format before it’s sent from a
client to the server.

= To maintain user-specific information.

= To create a data-driven web application using ASP.NET and LINQ to SQL.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.1 Introduction
13.2 Web Basics
13.3 Multitier Application Architecture
13.4 Your First Web Application
13.4.1 Building the webTime Application
13.4.2 Examining WebTime.aspx’s Code-Behind File
13.5 Standard Web Controls: Designing a Form
13.6 Validation Controls
13.7 Session Tracking
13.7.1 Cookies
13.7.2 Session Tracking with HttpSessionState
13.7.3 Options.aspx: Selecting a Programming Language

13.7.4 Recommendations.aspx: Displaying Recommendations Based on Session Values

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.8 Case Study: Database-Driven ASP.NET Guestbook

13.8.1 Building a Web Form that Displays Data from a Database

13.8.2 Modifying the Code-Behind File for the Guestbook Application
13.9 Online Case Study: ASP.NET AJAX

13.100nline Case Study: Password-Protected Books Database Application
13.11 Wrap-Up

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.1 Introduction

» In this chapter, we introduce web-application development
with Microsoft’s ASP.NET technology.

» Web-based applications create web content for web-browser
clients.

» We present several examples that demonstrate web-
application development using Web Forms, web controls
(also called ASP.NET server controls) and Visual Basic
programming.

» Web Form files have the file-name extension .aspx and
contain the web page’s GUI.

» You customize Web Forms by adding web controls
including labels, textboxes, images, buttons and other GUI
components.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.1 Introduction

» The Web Form file represents the web page that is sent
to the client browser.

» We often refer to Web Form files as ASPX files.

» An ASPX file created in Visual Studio has a
corresponding class written in a .NET language—we
use Visual Basic in this book.

» This class contains event handlers, initialization code,
utility methods and other supporting code.

» The file that contains this class is called the code-
behind file and provides the ASPX file’s programmatic
implementation.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.1 Introduction

» To develop the code and GUIs 1n this chapter, we used
Microsoft’s Visual Web Developer 2010 Express—a free
IDE designed for developing ASP.NET web applications.

» The full version of Visual Studio 2010 includes the
functionality of Visual Web Developer, so the instructions

we present for Visual Web Developer also apply to Visual
Studio 2010.

» The database example (Section 13.8) also requires SQL
Server 2008 Express.

» See the Before You Begin section of the book for additional
information on this software.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.1 Introduction

» In the online chapter, Web App Development: A Deeper
Look, we present several additional web-application
development topics, including:

° master pages to maintain a uniform look-and-feel across the
Web Forms in a web application

o creating password-protected websites with registration and
login capabilities

- using the Web Site Administration Tool to specify which
parts of a website are password protected

> using ASP.NET AJAX to quickly and easily improve the user
experience for your web applications, giving them
responsiveness comparable to that of desktop applications.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.2 Web Basics

» In this section, we discuss what occurs when a user requests
a web page 1n a browser.

» In its stmplest form, a web page 1s nothing more than an
HTML (HyperText Markup Language) document (with the
extension .html or .htm) that describes to a web browser the
document’s content and how to format it.

» HTML documents normally contain hyperlinks that link to
different pages or to other parts of the same page.

» When the user clicks a hyperlink, a web server locates the
requested web page and sends it to the user’s web browser.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.2 Web Basics

» Similarly, the user can type the address of a web page
into the browser’s address field and press Enter to view
the specified page.

» Web development tools like Visual Web Developer

typically use a “stricter” version of HTML called
XHTML (Extensible HyperText Markup Language).

» ASP.NET produces web pages as XHTML documents.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.2 Web Basics

» URIs and URLs

o URIs (Uniform Resource Identifiers) identify resources on the
Internet.

> URISs that start with http:// are called URLs (Uniform
Resource Locators).

o Common URLs refer to files, directories or server-side code
that performs tasks such as database lookups, Internet searches
and business application processing.

o If you know the URL of a publicly available resource
anywhere on the web, you can enter that URL into a web
browser’s address field and the browser can access that

resource.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.2 Web Basics

» Parts of a URL

o A URL contains information that directs a browser to the
resource that the user wishes to access.

> Web servers make such resources available to web clients.

> Popular web servers include Microsoft’s Internet Information
Services (IIS) and Apache’s HTTP Server.
> Let’s examine the components of the URL
http://www.deitel.com/books/downloads.html

> The http:// indicates that the HyperText Transfer Protocol
(HTTP) should be used to obtain the resource.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.2 Web Basics

» HT'TP 1s the web protocol that enables clients and
servers to communicate.

» Next in the URL 1s the server’s fully qualified
hostname (www . de1tel.com)—the name of the web
server computer on which the resource resides.

» This computer 1s referred to as the host, because it
houses and maintains resources.

» The hostname www . deitel . comis translated into an

IP (Internet Protocol) address—a numerical value that
uniquely 1dentifies the server on the Internet.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.2 Web Basics

» A Domain Name System (DNS) server maintains a database of
hostnames and their corresponding IP addresses, and performs
the translations automatically.

» The remainder of the URL (/books/downloads.html)

specifies the resource’s location (/books) and name
(downloads.html) on the web server.

» The location could represent an actual directory on the web
server’s file system.

» For security reasons, however, the location is typically a virtual
directory.

» The web server translates the virtual directory into a real location
on the server, thus hiding the resource’s true location.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.2 Web Basics

» Making a Request and Receiving a Response

> When given a URL, a web browser uses HTTP to retrieve and
display the web page found at that address.

> Figure 13.1 shows a web browser sending a request to a web
server.

> Figure 13.2 shows the web server responding to that request.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

a) The request is
sent from the

web client to the Web server
web server 4 b) After it receives
Z the request, the
B] ? a
B a7 web server
B . searches its
system for the
resource
Web client

——— - [nternet

Fig. 13.1 | Client requesting a resource from a web server.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

Web server

y The server
- ~| responds to the
ey ponds 1
B . | request with
;?_ﬁ__l | the resource's
‘ contents

Web client

——(Internet ~ra——

Fig. 13.2 | Client receiving a response from the web server.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.3 Multitier Application Architecture

» Web-based applications are multitier applications
(sometimes referred to as n-tier applications).

» Multitier applications divide functionality into separate
tiers (that 1s, logical groupings of functionality).
» Although tiers can be located on the same computer,

the tiers of web-based applications commonly reside on
separate computers for security and scalability.

» Figure 13.3 presents the basic architecture of a three-
tier web-based application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

Top tier

(Client tier) Browser User interface
. . Busi logi
Middle tier SUsiness 1ogle
(Busi logic tier) Web server implemented in
usiness logic tier ASPNET

Bottom tier

. Database
(Information tier)

Fig. 13.3 | Three-tier architecture.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.3 Multitier Application Architecture

» Information Tier

> The information tier (also called the bottom tier) maintains the
application’s data.

> This tier typically stores data in a relational database
management system.

> For example, a retail store might have a database for storing
product information, such as descriptions, prices and quantities
in stock.

> The same database also might contain customer information,
such as user names, billing addresses and credit card numbers.

> This tier can contain multiple databases, which together
comprise the data needed for an application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.3 Multitier Application Architecture

» Business Logic

> The middle tier implements business logic, controller logic and
presentation logic to control interactions between the
application’s clients and its data.

> The middle tier acts as an intermediary between data in the
information tier and the application’s clients.

> The middle-tier controller logic processes client requests (such
as requests to view a product catalog) and retrieves data from
the database.

> The middle-tier presentation logic then processes data from the
information tier and presents the content to the client.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.3 Multitier Application Architecture

» Web applications typically present data to clients as web
pages.

» Business logic in the middle tier enforces business rules and
ensures that data is reliable before the server application
updates the database or presents the data to users.

» Business rules dictate how clients can and cannot access
application data, and how applications process data.

» For example, a business rule in the middle tier of a retail
store’s web-based application might ensure that all product
quantities remain positive.

» A client request to set a negative quantity in the bottom
tier’s product information database would be rejected by the
middle tier’s business logic.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.3 Multitier Application Architecture

» Client Tier

The client tier, or top tier, 1s the application’s user interface,

which gathers input and displays output.

o Users interact directly with the application through the user
interface (typically viewed in a web browser), keyboard and
mouse.

> In response to user actions (for example, clicking a hyperlink),
the client tier interacts with the middle tier to make requests
and to retrieve data from the information tier.

> The client tier then displays to the user the data retrieved from
the middle tier.

> The client tier never directly interacts with the information tier.

o

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4 Your First Web Application

» Our first example displays the web server’s time of day in a
browser window (Fig. 13.4).

» When this application executes—that 1s, a web browser
requests the application’s web page—the web server
executes the application’s code, which gets the current time
and displays it in a Label.

» The web server then returns the result to the web browser
that made the request, and the web browser renders the web
page containing the time.

» We executed this application 1n both the Internet Explorer
and Firefox web browsers to show you that the web page
renders 1dentically in each.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

€ A Simple Web Form Example - Windows Internet Explorer

y W
UL) ™ |E http://localhost:50180/WebTime/WebTime.aspx v

o] o |

2§ Google P ~|

«ﬂx

@

.7 Favorites i(éASimpleWeb Form Example AR B ~= g% v Pagev Safety~ Tools~ @~ H

Current time on the Web server:

e | »

12:40:29

Dene € Local intranet | Protected Mode: Off f3 ~ ®100% ~
@ A Simple Web Form Example - Mezilla Firefox o] 2=
File Edit View History Bookmarks Tools Help
» C £ |] http://localhost:50180/WebTime/WebTime.aspx 77 - | | *§~ Google P|
| _ ASimple Web Form Example | + | |
Current time on the Web server:

iy » | 4

1

%

Fig. 13.4 | WebTime web application running in both Internet
Explorer and Firefox.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4 Your First Web Application

» Testing the Application in Your Default Web Browser

» To test this application in your default web browser,
perform the following steps:
> Open Visual Web Developer.
> Select Open Web Site... from the File menu.

> In the Open Web Site dialog (Fig. 13.5), ensure that File
System is selected, then navigate to this chapter’s examples,
select the WebT1me folder and click the Open Button.

> Select WebTime. aspx in the Solution Explorer, then type
Ctrl + F5 to execute the web application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

File System

Select the folder you want to open. @ X

4 & Local Disk (C:) -
> 1 9e7d62f9375b68fI663aebffc625a5
| 9417e6b48140824b92f78fb927
|, a0d1464b30c1a72c25
| allfonts
FTP Site » Ju books
% b1 cB161b838f63798759
: }
]
L
4

Local IS >

. DataFiles
) dell
|, examples

1 chi3

> (1. WebTime|
. mif2go
., mysql-connector-java-5.1.7
. Perflogs
. Program Files
. Program Files (x86)
» b Sun

m

Remote Site b

.,

Folder:
C\examples\chl13\WebTime

Open [\ Cancel

Fig. 13.5 | Open Web Site dialog.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4 Your First Web Application

» Testing the Application in a Selected Web Browser

> If you wish to execute the application in another web browser, you
can copy the web page’s address from your default browser’s address
field and paste it into another browser’s address field, or you can
perform the following steps:

> In the Solution Explorer, right click WebT1me.aspXx and select
Browse With... to display the Browse With dialog (Fig. 13.6).

o From the Browsers list, select the browser in which you’d like to
test the web application and click the Browse Button.

» If the browser you wish to use 1s not listed, you can use the
Browse With dialog to add items to or remove items from
the list of web browsers.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

Browse With - WebTime.aspx

Browsers:

Internal Web Browser
Internet Explorer (Default)

e

| Add..

]

[Remove

)

[Set as Default]

Size of browser window:

| Default

z)

| Browse %J[Cancel |

Fig. 13.6 | Selecting another web browser to execute the web
application.

© 1992-2011 by Pearson Education, Inc.

All Rights Reserved.

13.4.1 Building the webT1me Application

» Now that you’ve tested the application, let’s create it in
Visual Web Developer.

» Step 1: Creating the Web Site Project
> Select File > New Web Site...
> to display the New Web Site dialog (Fig. 13.7).
> In the left column of this dialog, ensure that Visual Basic is
selected, then select Empty Web Site in the middle column.

> At the bottom of the dialog you can specify the location and
name of the web application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

New Web Site

Recent Templates Sort by: lDefauft { Search Installed Templates P e l
Installed Templates
pla a‘ § . . Type: Visual Basic
. . —y® ASP.NET Web Site Visual Basic
Visual Basic =8 An empty Web site
Visual C#
QB ASP.NET Web Service Visual Basic
Online Templates :
@; Empty Web Site % Visual Basic
[Empty Web Site |
% Silverlight 1.0 Web Site Visual Basic
’vﬂiﬂ WCF Service Visual Basic
Vi
g 2 ; Dynamic Data Entities Web Site Visual Basic
L
Vi
lB /{ Dynamic Data Ling to SQL Web Site Visual Basic

Web location: File System v | Chexamples\ch13\WebTime| v Browse...

. TN

Fig. 13.7 | Creating an ASP.NET Web Site in Visual Web

™o 1o - -

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» The Web location: ComboBoX provides the following

options:

> File System: Creates a new website for testing on your local
computer. Such websites execute in Visual Web Developer’s
built-in ASP.NET Development Server and can be accessed
only by web browsers running on the same computer. You can
later “publish” your website to a production web server for
access via a local network or the Internet. Each example 1n this
chapter uses the File System option, so select it now.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

o HTTP: Creates a new website on an IIS web server and uses HTTP
to allow you to put your website’s files on the server. IIS i1s
Microsoft’s software that is used to run production websites. If you
own a website and have your own web server, you might use this to
build a new website directly on that server computer. You must be an
Administrator on the computer running IIS to use this option.

o FTP: Uses File Transfer Protocol (FTP) to allow you to put your
website’s files on the server. The server administrator must first
create the website on the server for you. FTP is commonly used by
so-called “hosting providers” to allow website owners to share a
server computer that runs many websites.

» Change the name of the web application from WebS1tel
to WebT1me, then click the OK Button to create the
website.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» Step 2: Adding a Web Form to the Website and Examining the
Solution Explorer

> A Web Form represents one page in a web application—we’ll often use
the terms “page” and “Web Form™ interchangeably.

> A Web Form contains a web application’s GUI.

» To create the webT1me . aspx Web Form:

o Right click the project name in the Solution Explorer and select Add
New Item... to display the Add New Item dialog (Fig. 13.8).

> In the left column, ensure that Visual Basic is selected, then select Web
Form in the middle column.

> In the Name: TextBoX, change the file name to WebTi1me. aspx,
then click the Add Button.

» After you add the Web Form, the IDE opens it in Source view
by default (Fig. 13.9).

» This view displays the markup for the Web Form.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

-

Add New Item - C:\examples\ch13\WebTime\ (25
Installed Templates Sort by: [Default .] l Search Installed Templates P ’
Visual Basic =] -
Type: Visual B
Visual C2 Web Form Visual Basic ype: TisualBasic o
= Aform for Web Applications
Online Templat
™ Masterpage Vo Bosic
EE\ Web User Control Visual Basic
=) SkinFi ' .
. _T in File Visual Basic
=| TextFile Visual Basic
= | Global Application Class Visual Basic
[{A=L Style Sheet Visual Basic
Name: WebTime.aspx Place code in separate file
[| Select master page
™ L

Fig. 13.8 | Adding a new Web Form to the website with the Add
New Item dialog.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

WebTimeaspx X

Client Objects & Events '] (No Events) -
1 <X@ Page Language="VB" AutoEventwir‘eup="falsé=§—:

Source mode shows only =
the Web Form’s markup

<!DOCTYPE html PUBLIC ™-//W3C//DTD XHTML 1.@

El¢<html xmlns="http://www.w3.0rg/1999/xhtml">
Fl¢<head runat="server">

<titler</title>
| </head>

Split mode allows you to
view the Web Form’s markup
and design at the same time

0O~ oW W N

Design mode allows you to
build a Web Form using
similar techniques to building
a Windows Form

N 16
100% -
N

\
3 Design | O

4

Split |I§I‘Source | EI-:form#‘forml:» <div> B

Fig. 13.9 | Web Form in Source view.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» As you become more familiar with ASP.NET and
building web sites in general, you might use Source
view to perform high precision adjustments to your

design or to program in the JavaScript language that
executes 1n web browsers.

» For the purposes of this chapter, we’ll keep things
simple by working exclusively in Design mode.

» To switch to Design mode, you can click the Design
Button at the bottom of the code editor window.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» The Solution Explorer

> The Solution Explorer (Fig. 13.10) shows the contents of the
website.

> We expanded the node for WebTime . aspX to show you its
code-behind file WwebT1me.aspx. vb.

> Visual Web Developer’s Solution Explorer contains several
buttons that differ from Visual Basic Express.

> The View Designer button allows you to open the Web Form
in Design mode.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» The Copy Web Site button opens a dialog that allows
you to move the files in this project to another location,
such as a remote web server.

» This 1s useful 1f you’re developing the application on
your local computer but want to make 1t available to the
public from a different location.

» Finally, the ASP.NET Configuration button takes you
to a web page called the Web Site Administration
Tool, where you can manipulate various settings and
security options for your application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

View Code View Designer

Nest Related Files \ / Copy Web Site

Refresh] olutlon Iore
Properties —+ | Z da | EI =] |E a—— ASP.NET Configuration
2P C\..\WebTime\
|3 web.config
Code-behind file that 4 |[E| WebTime.aspx| ASPX page represents the
contains the application’s — %] WebTime.aspx.vb application’s user interface

business logic Cj SIS B2 Database Explorer

Fig. 13.10 | Solution Explorer window for an Empty Web Site
project.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» If the ASPX file 1s not open 1n the IDE, you can open it
in Design mode three ways:

> double click it in the Solution Explorer

> select it in the Solution Explorer and click the View
Designer () Button

> right click it in the Solution Explorer and select View
Designer

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webTi1me Application

» To open the code-behind file in the code editor, you can
> double click it in the Solution Explorer

> select the ASPX file in the Solution Explorer, then click the
View Code () Button

> right click the code-behind file in the Solution Explorer and
select Open

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» The Toolbox

° Figure 13.11 shows the Toolbox displayed in the IDE when the
project loads.

> Part (a) displays the beginning of the Standard list of web
controls, and part (b) displays the remaining web controls and
the list of other control groups.

> We discuss specific controls listed in Fig. 13.11 as they’re used
throughout the chapter.

> Many of the controls have similar or identical names to
Windows FOrms controls presented earlier in the book.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

a)

Toolbox

4 Standard
Rk Pointer
|5 AdRotator

:— BulletedList

Button

B;] Calendar
CheckBox

8= CheckBoxList
&8 DropDownList
%, FileUpload
bl HiddenField
A Hyperlink
& Image
ImageButton
] ImageMap
A Label
LinkButton
EZ ListBox

BN Literal

%l Localize

o LD

¥

m

MultiView

Panel
PlaceHolder
RadicButton
RadicButtonList
Substitution
Table

TextBox

100

1.1

Al

| E =

@
=4

View
Wizard
Xml

i - o

[» Data
I» Validation

I> Navigation

[> Login

[> WebParts

> AJAX Extensions
I> Dynamic Data

b HTML
4 General

w* Toolbox

Fig. 13.11 | Toolbox in Visual Web Developer.

© 1992-2011 by Pearson Education, Inc.

All Rights Reserved.

13.4.1 Building the webT1me Application

» The Web Forms Designer
o Figure 13.12 shows the initial Web Form in Design mode.

> You can drag and drop controls from the Toolbox onto the
Web Form.

> You can also type at the current cursor location to add so-
called static text to the web page.

> In response to such actions, the IDE generates the appropriate
markup in the ASPX file.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

WebTime.aspx X

Ldiv]

-

O Split | ® Source | E“(html:»”mody:v”<form#form1>| <d:’v> EI

Cursor appears here by default Cursor’s current location in the document

Fig. 13.12 | Design mode of the Web Forms Designer.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» Step 3: Changing the Title of the Page

> Before designing the Web Form’s content, you’ll change its
title to A STmple Web Form Example.

o This title will be displayed in the web browser’s title bar (see
Fig. 13.4).

o It’s typically also used by search engines like Google and Bing
when they index real websites for searching.

> Every page should have a title.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» To change the title:
- Ensure that the ASPX file is open in Design view.

> View the Web Form’s properties by selecting DOCUMENT,
which represents the Web Form, from the drop-down list in the
Properties window.

> Modify the Title property in the Properties window by setting
itto ASimpleweb Form Example.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» Designing a Page
> Designing a Web Form is similar to designing a Windows
Form.

> To add controls to the page, drag-and-drop them from the
Toolbox onto the Web Form in Design view.

> The Web Form and each control are objects that have
properties, methods and events.

> You can set these properties visually using the Properties
window or programmatically in the code-behind file.

> You can also type text directly on a Web Form at the cursor
location.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» Controls and other elements are placed sequentially on
a Web Form one after another in the order in which you
drag-and-drop them onto the Web Form.

» The cursor indicates the 1nsertion point in the page.

» If you want to position a control between existing text
or controls, you can drop the control at a specific
position between existing page elements.

» You can also rearrange controls with drag-and-drop
actions in Design view.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» The positions of controls and other elements are
relative to the Web Form’s upper-left corner.

» This type of layout 1s known as relative positioning and
1t allows the browser to move elements and resize them
based on the size of the browser window.

» Relative positioning is the default, and we’ll use it
throughout this chapter.

» For precise control over the location and size of
elements, you can use absolute positioning in which

controls are located exactly where you drop them on
the Web Form.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» If you wish to use absolute positioning:
> Select Tools > Options...., to display the Options dialog.
o If it isn’t checked already, check the Show all settings
checkbox.

> Next, expand the HTML Designer > CSS Styling node and
ensure that the checkbox labeled Change positioning to
absolute for controls added using Toolbox, paste or drag
and drop is selected.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» Step 4: Adding Text and a Labe]l

» You’ll now add some text and a Labe 1 to the Web

Form. Perform the following steps to add the text:

> Ensure that the Web Form is open in Design mode.

> Type the following text at the current cursor location:
Current time on the web server:

o Select the text you just typed, then select Heading 2 from the
Block Format ComboBox (Fig. 13.13) to format this text as a
heading that will appear in a larger bold font. In more complex
pages, headings help you specify the relative importance of
parts of that content—Ilike sections in a book chapter.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

Block Format ComboBox

e

[=] WebTime (2) - Microsoft Visual Web Develogler 2010 Express

File Edit View Website Debug

Format| Table Tools Window Help

[E=% Nol =<~

Pl - S| % a9

i | <Automatic> | 2| MNone)

WebTime.aspx® X
,I div|
Current time on the Web ser

<

o Split | & Sourc

fyg abeueyy 4 sapadoid §50 B xogjoo) X

o>

(None)

Paragraph <p>
Heading1 <hl>
Heading 2 <h2>
Heading 3 <h3>
Heading 4 <hd>
Heading 5 <h5>
Heading 6 <h6>
Unordered List
Ordered List
Defined Term <dt>
Definition <dd>
Address <address>

| Preformatted <pre>

Block Quote <blockquote>

| Apply Styles...

- | Defautt Font) | (Defautt -/ | B £ U

~ Solution Explorer
= a|LA sl=iiok
2P C\..\WebTime\
=% web.config
4 [E| WebTime.aspx
‘%] WebTime.aspx.vb

sipadoig A

@ <div> t—‘j ISIGTNE = s el 5= Database Explor...

Fig. 13.13 | Changing the text to Heading 2 heading.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

> Click to the right of the text you just typed and press the Enfer
key to start a new paragraph in the page. The Web Form
should now appear as in Fig. 13.14.

> Next, drag a Labe control from the Toolbox into the new
paragraph or double click the Label control in the Toolbox to
insert the Labe | at the current cursor position.

> Using the Properties window, set the Labe1’s (ID) property
to timeLabel. This specifies the variable name that will be
used to programmatically change the Label’s Text.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

WebTime.aspx™ X

The cursor is Current time on the Web server:
0

positioned here after __ ¢
inserting a new
paragraph by y J

pressing Enter O Split | @ Source | E]|<form#fom1>||<div>] <p> IEI

m.|»

t

Fig. 13.14 | WebTime.aspx after inserting text and a new
paragraph.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webTi1me Application

> Because, the Labe1’s Text will be set programmatically,

delete the current value of the Labe1’s Text property. When
a Label does not contain text, its name is displayed in square
brackets in Design view (Fig. 13.15) as a placeholder for
design and layout purposes. This text 1s not displayed at
execution time.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

WebTime.aspx X

Current time on the Web server:

asp:label#timeLabel
LabeT control [timeLabel]

[| »

-

4 3

O Split | @ Source | E <asp:LabeI#‘timeLabeI>|E|

Fig. 13.15 | WebTime.aspx after adding a Label.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» Step 5: Formatting the Labe

o Formatting in a web page is performed with CSS (Cascading
Style Sheets).

> The details of CSS are beyond the scope of this book.

o However, 1t’s easy to use CSS to format text and elements in a
Web Form via the tools built into Visual Web Developer.

> In this example, we’d like to change the Labe1’s background
color to black, its foreground color yellow and make its text
size larger.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» To format the Labe 1, perform the following steps:
> Click the Labe in Design view to ensure that it’s selected.
> Select View > Other Windows > CSS Properties to display
the CSS Properties window at the left side of the IDE
(Fig. 13.16).
> Right click in the Applied Rules box and select New Style...
to display the New Style dialog (Fig. 13.17).

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

> Type the new style’s name—. t1meSty |l e—in the Selector:
ComboBoX. Styles that apply to specific elements must be
named with a dot (.) preceding the name. Such a style is
called a CSS class.

> Each item you can set in the New Style dialog is known as a
CSS attribute. To change timeLabe 1’s foreground color,
select the Font category from the Category list, then select the
yellow color swatch for the color attribute.

> Next, change the font-size attribute to xx-1large.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

CSS Properties > X

......... <

Applied Rules
(no rules applied)

CSS Properties

X Toolbox NESLILNELTEY) Manage Styles

Fig. 13.16 | CSS Properties window.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

The new style will be applied to
the currently selected element in

New style’s name \M\ , R
Selector: .Jﬂlﬁmﬂ |z| Apply new style to document selection
Define in: ECurrent page El URL: v Browse...
Font category allows you to _ :
style an element’s font Block fomt: e | S [=]
| Background font-size: | =] |px text-decoration:
Bordk - I i
Background category allows e o font neight: [=] g““d‘?’”e
you to specify an element’s Position font-style: | D:::_rﬂ::@
X =
background color or e font-variant: | [=] ik
background image Table text-transform: | [+] [“Inone
color: E l:]
Preview:
Preview of what the AaBbYyGgllj
style will look like
Description:
ok J [cancel | [ooy

Fig. 13.17 | New Style dialog.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

> To change t1meLabe1’s background color, select the
Background category, then select the black color swatch for
the background-color attribute.

» The New Style dialog should now appear as shown in
(Fig. 13.18).

» Click the OK Button to apply the style to the
timeLabel so that it appears as shown in Fig. 13.19.

» Also, notice that the Label’s CssClass property is
now set to timeStyle in the Properties window.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

New Style

Selector: |.timeStyle E] [] Apply new style to document selection
Definein: | Current page [=] uRL: Browse...
Category:
Bold category | Font background-color: | 000000 [+ [l
names indicate the < Block
categories in which e eckamund imnge Jen]
CSS att]—ibute Box background-repeat: El
values have been ::';?tn background-attachment: El
changed List () background-position: E| = lpx
Table (y) background-position:]Zl 2 lpx
Preview:
¥ h =
AaBbYyGglL1J;
-~)
Description: font-size: xx4arge; color: #FFFFO0; background-color: #000000

[oc [concd [ooy |

Fig. 13.18 | New Style dialog after changing the Label’s font size,
foreground color and background color.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

e e R SR

Current time on the Web server:
asp:label#timeLabe 3

[timeLabel]

-

4 »

o Split | & Source | E <asp:LabE|.timeSty|e#timm

Fig. 13.19 | Design view after changing the Label’s style.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» Step 6: Adding Page Logic
> Now you’ll write code in the code-behind file to obtain the
server’s time and display it on the Label.
> First, open WebTime.aspXx . vb by double clicking its node
in the Solution Explorer.
> In this example, you’ll add an event handler to the code-behind
file to handle the Web Form’s Init event, which occurs when
the page 1s first requested by a web browser.
> The event handler for this event—named Page_Init—initializes
the page.
> The only 1nitialization required for this example 1s to set the
timeLabel’s Text property to the time on the web server
computer.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» To create the Page_In1it event handler:
> Select (Page Events) from the left ComboBoOX at the top of
the code editor window.

> Select Init from the right ComboBoX at the top of the code
editor window.

> Complete the event handler by inserting the following code in
the Page_In1it event handler:

" display the server's current time in timeLabel
timeLabel.Text = DateTime.Now.ToString("hh:mm:ss™)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» Step 7: Setting the Start Page and Running the
Program

> To ensure that WebT1me . aspx loads when you execute this
application, right click it in the Solution Explorer and select
Set As Start Page.

> You can now run the program in one of several ways.
> At the beginning of Fig. 13.4, you learned how to view the
Web Form by typing Ctrl + F5 to run the application.

> You can also right click an ASPX file in the Solution Explorer
and select View in Browser.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» Both of these techniques execute the ASP.NET
Development Server, open your default web browser

and load the page into the browser, thus running the
web application.

» The development server stops when you exit Visual
Web Developer.

» If problems occur when running your application, you
can run it in debug mode by selecting Debug > Start
Debugging, by clicking the Start Debugging
Button () or by typing F5 to view the web page in a
web browser with debugging enabled.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» You cannot debug a web application unless debugging
1s explicitly enabled in the application’s Web.config
file—a file that 1s generated when you create an
ASP.NET web application.

» This file stores the application’s configuration settings.

» You’ll rarely need to manually modify Web.conf1ig.

» The first time you select Debug > Start Debugging in
a project, a dialog appears and asks whether you want
the IDE to modify the Web . conf1(g file to enable
debugging.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.1 Building the webT1me Application

» After you click OK, the IDE executes the application.
» You can stop debugging by selecting Debug > Stop Debugging.

» Regardless of how you execute the web application, the IDE will
compile the project before it executes.

» In fact, ASP.NET compiles your web page whenever it changes
between HTTP requests.

» For example, suppose you browse the page, then modify the ASPX file
or add code to the code-behind file.

» When you reload the page, ASP.NET recompiles the page on the server
before returning the response to the browser.

» This important behavior ensures that clients always see the latest
version of the page.

» You can manually compile an entire website by selecting Build Web
Site from the Debug menu in Visual Web Developer.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.4.2 Examining webTime.aspx’s Code-
Behind File

» Figure 13.20 presents the code-behind file
wWebTime.aspx.vb.

» Line 3 of Fig. 13.20 begins the declaration of class
WebT1me.

» In Visual Basic, a class declaration can span multiple
source-code files—the separate portions of the class
declaration 1n each file are known as partial classes.

» The Partial modifier indicates that the code-behind file 1s
part of a larger class.

» Like Windows Forms applications, the rest of the class’s

code 1s generated for you based on your visual interactions

to create the application’s GUI in Design mode.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.4.2 Examining webTime.aspx’s Code-
Behind File

» That code 1s stored in other source code files as partial
classes with the same name.

» The compiler assembles all the partial classes that have
the same into a single class declaration.

» Line 4 indicates that WebT1me inherits from class
Page in namespace System.Web. UL

» This namespace contains classes and controls for
building web-based applications.

» Class Page represents the default capabilities of each
page 1n a web application—all pages inherit directly or
indirectly from this class.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

" Fig. 13.20: WebTime.aspx.vb
' Code-behind file for a page that displays the current time.
Partial Class WebTime
Inherits System.Web.UI.Page
' initializes the contents of the page
Protected Sub Page_Init(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Init

WO~V L WN =

10 " display the server's current time in timelLabel
11 timelLabel.Text = DateTime.Now.ToString()
12 End Sub ' Page_Init

I3 End Class ' WebTime

Fig. 13.20 | Code-behind file for a page that displays the web server’s
time.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.4.2 Examining webTime.aspx’s Code-

<

Behind File

>

>

Lines 7-12 define the Page_In1t event handler, which
initializes the page in response to the page’s In1t event.

The only initialization required for this page is to set the
timeLabel’s Text property to the time on the web
server computer.

The statement in line 11 retrieves the current time
(DateT1me.Now) and formats it as hh 2mm .ss.

For example, 9 AM 1s formatted as 09:00:00, and 2:30 PM
1s formatted as 02:30:00.

As you’ll see, variable t1meLabe represents an
ASPNET Labe]l control.

The ASP.NET controls are defined in namespace
System.Web.UIL. WebControls.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Standard Web Controls: Designing
a Form

» This section introduces some of the web controls
located in the Standard section of the Toolbox
(Fig. 13.11).

» Figure 13.21 summarizes the controls used 1n the next
example.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

TextBox Gathers user input and displays text.

Button Triggers an event when clicked.

HyperLink Displays a hyperlink.

DropDownList Displays a drop-down list of choices from which a user can select an
item.

RadioButtonList Groups radio buttons.

Image Displays images (for example, PNG, GIF and JPG).

Fig. 13.21 | Commonly used web controls.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Examining WebTime.aspx’s Code-
Behind File

» A Form Gathering User Input
> Figure 13.22 depicts a form for gathering user input.

> This example does not perform any tasks—that 1s, no action
occurs when the user clicks Register.

> As an exercise, we ask you to provide the functionality.

> Here we focus on the steps for adding these controls to a Web
Form and for setting their properties.

> Subsequent examples demonstrate how to handle the events of
many of these controls.

> To execute this application:

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

Heading 3 paragraph
Paragraph of plain text

Image control

A table containing four
Images and four TextBoxes

TextBox control

DropDownList control

HyperLink control

= Een

‘€ Web Controls Demonstration - Windows Internet Explorer

OO 7 [gl http://localh... « [k3 ‘1] X | |29 Google P~
<7 Favorites ‘,@Web Controls Demonstr...‘lr ‘& > ¥ [l 5-%3 o

Registration Form

Please fill in all fields and click the Register button.

User Information .

Publications -

Which book would vou like information about?

Visual Basic 2010 How to ProgramE]

Click here to view more information about our books

Fig. 13.22 | Web Form that demonstrates web controls. (Part | of
2.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

Operating System

© Windows 7

© Windows Vista
RadioButtonList control) Windows XP
O Mac OS X

© Limx

© Other

Button control Register

€& Local intranet | Protected Mode: Off 43 v HI0% ~

Fig. 13.22 | Web Form that demonstrates web controls. (Part 2 of
2.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Examining WebTime.aspx’s Code-
Behind File

> Select Open Web Site... from the File menu.

> In the Open Web Site dialog, ensure that File System is
selected, then navigate to this chapter’s examples, select the
wWebControls folder and click the Open Button.

> Select webControls.aspx in the Solution Explorer, then
type Ctrl + F5 to execute the web application in your default
web browser.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Examining WebTime.aspx’s Code-
Behind File

» Create the Web Site

> To begin, follow the steps in Section 13.4.1 to create an Empty
Web Site named WebControls, then add a Web Form
named WebControls.aspx to the project.

> Set the document’s T1t |e property to "Web Controls
Demonstration”.

> To ensure that WebControls.aspx loads when you execute

this application, right click it in the Solution Explorer and
select Set As Start Page.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Examining WebTime.aspx’s Code-
Behind File

» Adding the Images to the Project

> The images used in this example are located in the 1Tmages
folder with this chapter’s examples.

> Before you can display images in the Web Form, they must be
added to your project.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Examining WebTime.aspx’s Code-
Behind File

» To add the Tmages folder to your project:
> Open Windows Explorer.
> Locate and open this chapter’s examples folder (ch13).

> Drag the 1mages folder from Windows Explorer into Visual
Web Developer’s Solution Explorer window and drop the
folder on the name of your project.

» The IDE will automatically copy the folder and 1ts
contents into your project.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Examining WebTime.aspx’s Code-
Behind File

» Adding Text and an Image to the Form

» Next, you’ll begin creating the page. Perform the

following steps:

o First create the page’s heading. At the current cursor position
on the page, type the text 'Registration Form", then use
the Block Format ComboBoX in the IDE’s toolbar to change
the text to Heading 3 format.

> Press Enter to start a new paragraph, then type the text
"Pleasefillinall fields and click the
Register button'.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Examining WebTime.aspx’s Code-
Behind File

> Press Enter to start a new paragraph, then double click the
Image control in the Too 1box. This control inserts an image
into a web page, at the current cursor position. Set the
Image’s (ID) property to userInformationImage. The
ImageUrl property specifies the location of the image to
display. In the Properties window, click the ellipsis for the
ImageuUr1 property to display the Select Image dialog.
Select the 1mages folder under Project folders: to display
the list of images. Then select the image user.png.

> Click OK to display the image in Design view, then click to
the right of the Image and press Enter to start a new
paragraph.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Examining WebTime.aspx’s Code-
Behind File

» Adding a Table to the Form

» Form elements are often placed in tables for layout
purposes—Iike the elements that represent the first name,
last name, e-mail and phone information in Fig. 13.22.

o Next, you’ll create a table with two rows and two columns in Design
mode.

> Select Table > Insert Table to display the Insert Table dialog
(Fig. 13.23). This dialog allows you to configure the table’s options.

o Under Size, ensure that the values of Rows and Columns are both
2—these are the default values.

> Click OK to close the Insert Table dialog and create the table.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

Insert Table 7 =)
Size
Rows: IE—‘E: Columns: IZ—E
Layout
Alignment: Default E [V] specify width:

: () In pixels
Float: Default I 100 -
- IE‘ @ In percent
Cell padding: |1 _% [Spedify height:
= In pixels
Cell spacing: IZ | I'J
— In percent
Borders
Size: _|0 =
Color: -

[collapse table border
Background

Color: -

[use background picture

l Browse... Properties...
Set

[T set as default for new tables

ok || cancel

Fig. 13.23 | Insert Table dialog.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Examining WebTime.aspx’s Code-
Behind File

» By default, the contents of a table cell are aligned
vertically in the middle of the cell.

» We changed the vertical alignment of all cells in the
table by setting the va 11 gn property to top in the
Properties window.

» This causes the content in each table cell to align with
the top of the cell.

» You can set the va 11 gn property for each table cell
individually or by selecting all the cells in the table at
once, then changing the val1gn property’s value.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Examining WebTime.aspx’s Code-
Behind File

» After creating the table, controls and text can be added
to particular cells to create a neatly organized layout.

» Next, add Image and TextBoX controls to each the

four table cells as follows:

> Click the table cell in the first row and first column of the
table, then double click the Image control in the Toolbox. Set
its (ID) property to T1rstNameImage and set its
Imageur 1 property to the image fname. png.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Examining WebTime.aspx’s Code-
Behind File

> Next, double click the TextBoX control in the Toolbox. Set
its (ID) property to T1rstNameTextBoX. As in Windows
Forms, a TextBox control allows you to obtain text from the
user and display text to the user

> Repeat this process in the first row and second column, but set
the Image’s (ID) property to lastNameImage and its
Imageur property to the image 1name. png, and set the
TextBox’s (ID) property to lastNameTextBoX.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Examining WebTime.aspx’s Code-
Behind File

> Repeat Steps I and 2 in the second row and first column, but
set the Image’s (ID) property to emal lImage and its
ImageuUr1 property to the image email.png, and set the
TextBox’s (ID) property to emallTextBox.

> Repeat Steps I and 2 in the second row and second column,
but set the Image’s (ID) property to phoneImage and its
Imageur 1 property to the image phone. png, and set the
TextBox’s (ID) property to phoneTextBox.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Examining WebTime.aspx’s Code-
Behind File

» Creating the Publications Section of the Page

» This section contains an Image, some text, a
DropDownL1st control and a HyperL1nk control.

» Perform the following steps to create this section:

> Click below the table, then use the techniques you’ve already
learned 1n this section to add an Image named
pub1icationsImage that displays the
publications.png image.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Examining WebTime.aspx’s Code-
Behind File

o Click to the right of the Image, then press Enter and type the
text "'Wh1ich book would you T1ke information
about?" in the new paragraph.

o Hold the Shift key and press Enter to create a new line in the
current paragraph, then double click the DropDownlList control
in the Toolbox. Set its (ID) property to
booksDropbDownL1st. This control is similar to the
Windows Forms ComboBoX control, but doesn’t allow users
to type text. When a user clicks the drop-down list, it expands
and displays a list from which the user can make a selection.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Examining WebTime.aspx’s Code-
Behind File

> You can add items to the DropDownL1 st using the Listltem
Collection Editor, which you can access by clicking the
ellipsis next to the DropDownL1st’s Items property in the
Properties window, or by using the DropDownList Tasks
smart-tag menu. To open this menu, click the small arrowhead
that appears in the upper-right corner of the control in Design
mode (Fig. 13.24). Visual Web Developer displays smart-tag
menus for many ASP.NET controls to facilitate common tasks.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Examining WebTime.aspx’s Code-
Behind File

o Clicking Edit Items... in the DropDownList Tasks menu
opens the Listltem Collection Editor, which allows you to add
L1stItemelements to the DropDownL1st. Add items for
"Visual Basic 2010 How to Program'”, "Visual C#
2008 How to Program', "Java How to Program' and
"C++ How to Program" by clicking the Add Button four
times. For each item, select it, then set its TeXt property to

one of the four book titles.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

_Unboundli <1 DropDownlist Tasks

Choose Data Source...

Edit tems...
[T] Enable AutoPostBack

Fig. 13.24 | DropDownlList Tasks smart-tag menu.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Examining WebTime.aspx’s Code-
Behind File

> Click to the right of the DropDownL1st and press Enter to
start a new paragraph, then double click the HyperLink control
in the Toolbox to add a hyperlink to the web page. Set its
(ID) property to booksHyperLink and its Text property
to "'Click here toviewmore information about

our books".

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Examining WebTime.aspx’s Code-
Behind File

> Set the NavigateUrl property to
http://www.deitel.com. This specifies the resource or
web page that will be requested when the user clicks the
HyperLink. Setting the Target property to _blank specifies
that the requested web page should open in a new browser
window. By default, HyperLink controls cause pages to
open 1n the same browser window.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Examining WebTime.aspx’s Code-
Behind File

» Completing the Page

> Next you’ll create the Operating System section of the page
and the Register Button.

> This section contains a RadioButtonList control, which
provides a series of radio buttons from which the user can
select only one.

- The RadioButtonList Tasks smart-tag menu provides an Edit

ltems... link to open the Listltem Collection Editor so that
you can create the items 1n the list.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Examining WebTime.aspx’s Code-
Behind File

» Perform the following steps:

> Click to the right of the HyperL1nk control and press Enter
to create a new paragraph, then add an Image named
osImage that displays the 0S.png image.

> Click to the right of the Image and press Enter to create a new
paragraph, then add a RadioButtonList. Setits (ID)
property to oOSRadioButtonL1st. Use the Listltem
Collection Editor to add the items shown in Fig. 13.22.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.5 Examining WebTime.aspx’s Code-
Behind File

> Finally, click to the right of the RadioButtonList and
press Enter to create a new paragraph, then add a Button. A
Button web control represents a button that triggers an action
when clicked. Set its (ID) property to registerButton
and its TeXt property to Register. As stated earlier,

clicking the Register button in this example does not do
anything.

» You can now execute the application (Ctrl + F5) to see
the Web Form 1n your browser.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» This section introduces a different type of web control,
called a validation control or validator, which determines
whether the data in another web control 1s 1n the proper
format.

» For example, validators can determine whether a user has
provided information in a required field or whether a zip-
code field contains exactly five digits.

» Validators provide a mechanism for validating user input on
the client.

» When the page 1s sent to the client, the validator 1s
converted into JavaScript that performs the validation in the
client web browser.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Examining WebTime.aspx’s Code-
Behind File

» JavaScript 1s a scripting language that enhances the
functionality of web pages and 1s typically executed on
the client.

» Unfortunately, some client browsers might not support
scripting or the user might disable it.

» For this reason, you should always perform validation
on the server.

» ASP.NET validation controls can function on the client,
on the server or both.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» Validating Input in a Web Form

> The Web Form in Fig. 13.25 prompts the user to enter a name,
e-mail address and phone number.

o A website could use a form like this to collect contact
information from visitors.

o After the user enters any data, but before the data 1s sent to the
web server, validators ensure that the user entered a value 1n
each field and that the e-mail address and phone-number
values are 1n an acceptable format.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» In this example, (555) 123-4567, 555-123-45677 and
123-4567 are all considered valid phone numbers.

» Once the data 1s submitted, the web server responds by
displaying a message that repeats the submitted
information.

» A real business application would typically store the
submitted data in a database or in a file on the server.

» We simply send the data back to the client to
demonstrate that the server received the data.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» To execute this application:
> Select Open Web Site... from the File menu.

> In the Open Web Site dialog, ensure that File System is
selected, then navigate to this chapter’s examples, select the
Validation folder and click the Open Button.

> Select Validation.aspx in the Solution Explorer, then

type Ctrl + F5 to execute the web application in your default
web browser.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» In the sample output:
> Fig. 13.25(a) shows the initial Web Form

> Fig. 13.25(b) shows the result of submitting the form before
typing any data in the TextBoXes

> Fig. 13.25(c) shows the results after entering data in each
TextBoX, but specifying an invalid e-mail address and
invalid phone number

> Fig. 13.25(d) shows the results after entering valid values for
all three TexXtBoXes and submitting the form.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

a) Initial Web Form

/€ Demonstrating Validation Controls - Windows Internet E... .
QO (€ rsrocn- 18] [x W5 -

¢ Favorites ‘eDemonstrating Validatio... o~ o

Please fill out all the fields in the following form:

Name:
E-mail-
Phone:

e.g.. email[@domain com
. eg.(555)555-1234

€& Local intranet | Protected Mode: Off ¥ v #®100%

b

Fig. 13.25 | Validators in a Web Form that retrieves user contact
information. (Part | of 4.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

b) Web Form after the user

£ = = - oo | i
presses the Submit Button é Demonstrating Validation Controls - Windows Internet E...

without having entered any data OO < [g http://localh... v‘ =] ‘1| X | |*§ Google P~
in the TextBoxes; each _ , : —
TextBox is followed by an error | ¥ Faverites | & Demonstrating Validatio... | ft ~ B -

message that was displayed by a
validation control || please fill out all the fields in the following form:

Name:
RequiredFieldvalidator Please enter your name
controls

e.g.. email@domain com

Please enter your e-mail address
Phoxg: e.g.. (555)555-1234

Please enter your phone number

€L Local intranet | Protected Mode: Off 5 v H100% ~

Fig. 13.25 | Validators in a Web Form that retrieves user contact
information. (Part 2 of 4.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

c) Web Form after the user enters a
name, an invalid e-mail address and an
invalid phone number in the
TextBoxes, then presses the Submit
Button; the validation controls display
error messages in response to the invalid
e-mail and phone number values

RegularExpressionValidator

/& Demonstrating Validation Controls - Windows Intemnet E... | = || = |
OO b l& http://localh... -| & | 4,’ X | 2 Google o -

¢ Favorites ‘féDemonstratingVaIidatio... : | @ b ¥ [=]

»

Please fill out all the fields in the following form:

Name: Bob White

E-mail: bwhite e.g.. email@domain com

controls

Please enter an e-mail address in a valid format

\R% 55-1234 e.g., (555) 555-1234
Please enter a phone number in a valid format

‘i Local intranet | Protected Mode: Off 3 v ®|100% ~

Fig. 13.25 | Validators in a Web Form that retrieves user contact
information. (Part 3 of 4.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

d) The Web Form [=
afte)r the user enters /€ Demonstrating Validation Controls - Windows Intemet E... | = || = |[me3n)

valid values for all [(G) @ [&] nitpocain.. | & [45] x | [#] Google P -
three TextBoxes) — e
and presses the ¢ Favorites . & Demonstrating Validatio... | | M- * [

Submit Button
Please fill out all the fields in the following form:

Name: Bob White
E-mail bwhite@deitel.cnm e.g.. email@domain.com
Phone: (555) 555-9876 e.g.. (555) 555-1234

Thank you for your submission

We received the following information:
Name: Bob White
E-mailbwhite @ deitel com
Phone(555) 555-9876

‘i Local intranet | Protected Mode: Off 3 v H100% ~

Fig. 13.25 | Validators in a Web Form that retrieves user contact
information. (Part 4 of 4.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» Creating the Web Site

> To begin, follow the steps in Section 13.4.1 to create an Empty
Web Site named Validation, then add a Web Form named
vValidation.aspx to the project.

> Set the document’s T1t | e property to "'Demonstrating
validation Controls".

> To ensure that Validation.aspx loads when you execute

this application, right click it in the Solution Explorer and
select Set As Start Page.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» Creating the GUI

» To create the page, perform the following steps:

- Type "Please fill out all the fields in the
following form:", then use the Block Format
ComboBoX in the IDE’s toolbar to change the text to Heading
3 format and press Enter to create a new paragraph.

o Insert a three row and two column table. You’ll add elements
to the table momentarily.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

> Click below the table and add a Button. Set its (ID)
property to submitButton and its Text property to
Submi t. Press Enter to create a new paragraph. By default, a

Button control in a Web Form sends the contents of the form
back to the server for processing.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

> Add a Label. Setits (ID) property to outputLabel and
clear its TeXt property—you’ll set it programmatically when
the user clicks the submitButton. Set the
outputLabel’s Visible property to False, so the Label
does not appear in the client’s browser when the page loads for
the first time. You’ll programmatically display this Label
after the user submits valid data.

» Next you’ll add text and controls to the table you
created 1n Step 2 above.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» Perform the following steps:
> In the left column, type the text "Name: " in the first row,
"E-mail:" in the second row and "Phone:" in the row
column.
° In the right column of the first row, add a TextBoX and set its
(ID) property to nameTeXxtBoX.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

° In the right column of the second row, add a TeXtBoX and set
its (ID) property to emal 1 TextBoxX. Then type the text
"e.g., emall@omain.com" to the right of the
TextBoxX.

° In the right column of the third row, add a TextBoX and set
its (ID) property to phoneTextBoxX. Then type the text
"e.g., (555) 555-1234" to the right of the TextBoX.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» Using RequiredFieldvalidator Controls

» We use three RequiredField Validator controls (found in
the Validation section of the Toolbox) to ensure that
the name, e-mail address and phone number
TextBoXes are not empty when the form 1s submitted.

» ARequiredFieldvalidator makes an input
control a required field.

» If such a field 1s empty, validation fails.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» Add aRequiredFieldvalidator as follows:

° Click to the right of the nameTeXtBoOX in the table and press
Enter to move to the next line.

- Add aRequiredFieldvalidator, setits (ID) to
nameRequiredFieldvalidator and set the
ForeColor property to Red.

o Set the validator’s ControlToValidate property to
nameTextBoX to indicate that this validator verifies the
nameTextBoX’s contents.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

> Set the validator’s ErrorMessage property to ' Please
enter your name". This is displayed on the Web Form only
if the validation fails.

> Set the validator’s Display property to Dynami C, so the
validator occupies space on the Web Form only when
validation fails. When this occurs, space 1s allocated
dynamically, causing the controls below the validator to shift
downward to accommodate the ErrorMessage, as seen in

Fig. 13.25(a)—(c).

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» Repeat these steps to add two more
RequiredFieldvalidatorsin the second and
third rows of the table.

» Set their (ID) properties to
emal lRequiredFieldvalidator and
phoneRequiredFieldvalidator, respectively,
and set their ErrormMessage properties to ' Please
enter your email address" and "Please
enter your phone number", respectively.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» Using RegulareExpressionvalidator Controls

> This example also uses two RegularExpressionValidator
controls to ensure that the e-mail address and phone number
entered by the user are in a valid format.

> Regular expressions are beyond the scope of this book;
however, Visual Web Developer provides several predefined
regular expressions that you can simply select to take
advantage of this powerful validation control.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» Add aRegularExpressionvalidator as

follows:

o Click to the right of the
emal IRequiredFieldvalidator in the second row of
the table and add a RegulareExpressionvalidator,
then set its (ID) to
emal IRegulareExpressionvalidator and its
ForeColor property to Red.

> Set the ControlTovalidate property to emal 1 TextBox
to indicate that this validator verifies the emai 1TextBox’s

contents.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

> Set the validator’s ErrorMessage property to ' Please
enter ane-mail addressinavalid format".

> Set the validator’s D1sp lay property to DynamiC, so the
validator occupies space on the Web Form only when

validation fails.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» Repeat the preceding steps to add another
RegulareExpressionvalidator in the third row of

the table.

» Setits (ID) property to
phoneRequiredFieldvalidator and its
ErrorMessage property to 'Please enter a phone
number inavalid format", respectively.

» ARegulareExpressionvalidator’s

ValidationExpression property specifies the regular
expression that validates the ControlTovalidate’s

contents.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» Clicking the ellipsis next to property
ValidationExpression in the Properties window
displays the Regular Expression Editor dialog, which
contains a list of Standard expressions for phone
numbers, zip codes and other formatted information.

» For the emai1RegularExpressionvalidator, we
selected the standard expression Internet e-mail address.

» If the user enters text in the emai 1 TextBoxX that does not
have the correct format and either clicks in a different text
box or attempts to submit the form, the ErrorMessage
text 1s displayed in red.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» For the phoneRegularExpressionvalidator,
we selected U.S.

» phone number to ensure that a phone number contains
an optional three-digit area code either in parentheses
and followed by an optional space or without
parentheses and followed by a required hyphen.

» After an optional area code, a phone number must
contain three digits, a hyphen and another four digits.

» For example, (555) 123-4567,555-123-4567
and 123-4567 are all valid phone numbers.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» Submitting the Web Form’s Contents to the Server

o If all five validators are successful (that 1s, each TeXtBoOX is
filled in, and the e-mail address and phone number provided
are valid), clicking the Submit button sends the form’s data to
the server.

> As shown 1n Fig. 13.25(d), the server then responds by
displaying the submitted data in the outputLabel.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» Examining the Code-Behind File for a Web Form That
Receives User Input

> Figure 13.26 shows the code-behind file for this application.

> Notice that this code-behind file does not contain any
implementation related to the validators.

> We say more about this soon.

o In this example, we respond to the page’s Load event to
process the data submitted by the user.

> This event occurs each time the page loads into a web
browser—as opposed to the In1t event, which executes only
the first time the page is requested by the user.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» The event handler for this event 1s Page_l.oad (lines 7—
30).

» To create the event handler, open
Validation.aspx.vb in the code editor and

perform the following steps:

> Select (Page Events) from the left ComboBoX at the top of
the code editor window.

> Select Load from the right ComboBOX at the top of the code
editor window.

> Complete the event handler by inserting the code from
Fig. 13.26.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

I ' Fig. 13.26: Validation.aspx.vb
2 ' Code-behind file for the form demonstrating validation controls.
3 Partial Class Validation
4 Inherits System.Web.UI.Page
5
6 ' Page_Load event handler executes when the page is loaded
7 Protected Sub Page_Load(ByVal sender As Object,
8 ByVal e As System.EventArgs) Handles Me.load
9
10 " if this 1is not the first time the page is loading
11 " (i.e., the user has already submitted form data)
12 If IsPostBack Then
13 Validate() ' validate the form
14
15 If IsValid Then
16 " retrieve the values submitted by the user
17 Dim name As String = nameTextBox.Text
18 Dim email As String = emailTextBox.Text
19 Dim phone As String = phoneTextBox.Text
20

Fig. 13.26 | Code-behind file for a Web Form that obtains a user’s
contact information. (Part | of 2.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

21 " create a table indicating the submitted values

22 outputlLabel.Text =

23

24 outputlLabel.Text &=

25 String.Format(,
26 name, , email, phone)

27 outputLabel.Visible = True ' display the output message
28 End If

29 End If

30 End Sub ' Page_Load

31 End Class ' Validation

Fig. 13.26 | Code-behind file for a Web Form that obtains a user’s
contact information. (Part 2 of 2.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» Differentiating Between the First Request to a Page and
a Postback

> Web programmers using ASP.NET often design their web
pages so that the current page reloads when the user submits
the form; this enables the program to receive input, process it

as necessary and display the results in the same page when it’s
loaded the second time.

> These pages usually contain a form that, when submitted,
sends the values of all the controls to the server and causes the
current page to be requested again.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» This event 1s known as a postback.

» Line 12 uses the IsPostBack property of class Page to
determine whether the page 1s being loaded due to a
postback.

» The first time that the web page is requested,
IsPostBack is False, and the page displays only
the form for user input.

» When the postback occurs (from the user clicking
Submit), IsPostBack is True.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» Server-Side Web Form Validation
> Server-side Web Form validation must be implemented
programmatically.
> Line 13 calls the current Page’s Validate method to validate
the information in the request.

> This validates the information as specified by the validation
controls in the Web Form.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» Line 15 uses the IsValid property of class Page to
check whether the validation succeeded.

» If this property 1s set to True (that is, validation
succeeded and the Web Form 1s valid), then we display
the Web Form’s information.

» Otherwise, the web page loads without any changes,
except any validator that failed now displays its
ErrorMessage.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» Processing the Data Entered by the User

o Lines 17—19 retrieve the values of nameTextBoxX,
emal | TextBox and phoneTextBox.

> When data 1s posted to the web server, the data that the user
entered 1s accessible to the web application through the web
controls’ properties.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.6 Validation Controls

» Next, lines 2227 set outputLabel’s Text to
display a message that includes the name, e-mail and
phone information that was submitted to the server.

» In lines 22, 23 and 26, notice the use of
 rather
than vbCrLT to start new lines in the
outputLabel—
 is the markup for a line
break 1in a web page.

» Line 27 sets the outputLabel’s Visible property
to True, so the user can see the thank-you message
and submitted data when the page reloads in the client
web browser.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7 Session Tracking

» Originally, critics accused the Internet and business of
failing to provide the customized service typically
experienced in “brick-and-mortar’ stores.

» To address this problem, businesses established
mechanisms by which they could personalize users’
browsing experiences, tailoring content to individual users.

» Businesses achieve this level of service by tracking each
customer’s movement through the Internet and combining
the collected data with information provided by the
consumer, including billing information, personal
preferences, interests and hobbies.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7 Session Tracking

» Personalization

> Personalization makes it possible for businesses to
communicate effectively with their customers and also
improves users’ ability to locate desired products and services.

o Companies that provide content of particular interest to users
can establish relationships with customers and build on those
relationships over time.

> Furthermore, by targeting consumers with personal offers,
recommendations, advertisements, promotions and services,
businesses create customer loyalty.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7 Session Tracking

» Websites can use sophisticated technology to allow
visitors to customize home pages to suit their individual
needs and preferences.

» Similarly, online shopping sites often store personal
information for customers, tailoring notifications and
special offers to their interests.

» Such services encourage customers to visit sites more
frequently and make purchases more regularly.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7 Session Tracking

» Privacy

° A trade-off exists between personalized business service and
protection of privacy.

> Some consumers embrace tailored content, but others fear the
possible adverse consequences if the info they provide to
businesses 1s released or collected by tracking technologies.

> Consumers and privacy advocates ask:

> What if the business to which we give personal data sells or
gives that information to another organization without our
knowledge?

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7 Session Tracking

» What if we do not want our actions on the Internet—a
supposedly anonymous medium—to be tracked and
recorded by unknown parties?

» What if unauthorized parties gain access to sensitive
private data, such as credit-card numbers or medical
history?

» These are questions that must be addressed by
programmers, consumers, businesses and lawmakers

alike.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7 Session Tracking

» Recognizing Clients

> To provide personalized services to consumers, businesses
must be able to recognize clients when they request
information from a site.

> As we have discussed, the request/response system on which
the web operates 1s facilitated by HTTP.

> Unfortunately, HTTP is a stateless protocol—it does not
provide information that would enable web servers to maintain
state information regarding particular clients.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7 Session Tracking

» This means that web servers cannot determine whether
a request comes from a particular client or whether the
same or different clients generate a series of requests.

» To circumvent this problem, sites can provide
mechanisms by which they identify individual clients.

» A session represents a unique client on a website.

» If the client leaves a site and then returns later, the
client will still be recognized as the same user.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7 Session Tracking

» When the user closes the browser, the session ends.

» To help the server distinguish among clients, each
client must 1identify itself to the server.

» Tracking individual clients 1s known as session
tracking.

» One popular session-tracking technique uses cookies

(discussed in Section 13.7.1); another uses ASP.NET’s
HttpSessionState object (used in Section 13.7.1).

» Additional session-tracking techniques are beyond this
book’s scope.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.1 Cookies

» Cookies provide you with a tool for personalizing web
pages.

» A cookie 1s a piece of data stored by web browsers in a
small text file on the user’s computer.

» A cookie maintains information about the client during and
between browser sessions.

» The first time a user visits the website, the user’s computer
might receive a cookie from the server; this cookie 1s then
reactivated each time the user revisits that site.

» The collected information is intended to be an anonymous
record containing data that is used to personalize the user’s
future visits to the site.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.1 Cookies

» For example, cookies in a shopping application might
store unique 1dentifiers for users.

» When a user adds items to an online shopping cart or
performs another task resulting in a request to the web
server, the server receives a cookie containing the
user’s unique identifier.

» The server then uses the unique identifier to locate the
shopping cart and perform any necessary processing.

» In addition to 1dentifying users, cookies also can
indicate users’ shopping preferences.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.1 Cookies

» When a Web Form receives a request from a client, the
Web Form can examine the cookie(s) 1t sent to the
client during previous communications, identify the
user’s preferences and immediately display products of
interest to the client.

» Every HTTP-based interaction between a client and a
server includes a header containing information either
about the request (when the communication is from the
client to the server) or about the response (when the
communication 1s from the server to the client).

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.1 Cookies

» When a Web Form receives a request, the header
includes information such as the request type and any
cookies that have been sent previously from the server
to be stored on the client machine.

» When the server formulates its response, the header
information contains any cookies the server wants to
store on the client computer and other information,
such as the MIME type of the response.

» The expiration date of a cookie determines how long
the cookie remains on the client’s computer.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.1 Cookies

» If you do not set an expiration date for a cookie, the
web browser maintains the cookie for the duration of
the browsing session.

» Otherwise, the web browser maintains the cookie until
the expiration date occurs.

» Cookies are deleted when they expire.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

Portability Tip 13.1

5‘@@‘ Users may disable cookies in their web browsers to help
ensure their privacy. Such users will experience
difficulty using web applications that depend on cookies
to maintain state information.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.1 Session Tracking with
HttpSessionState

» The next web application demonstrates session tracking
using the .NET class HttpSessionState.

» When you execute this application, the
Options.aspxX page (Fig. 13.27(a)), which is the
application’s Start Page, allows the user to select a
programming language from a group of radio buttons.

» When the user clicks Submit, the selection is sent to
the web server for processing.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.1 Cookies

» The web server uses an HttpSessionState object to
store the chosen language and the ISBN number for one of
our books on that topic.

» Each user that visits the site has a unique
HttpSessionState object, so the selections made by
one user are maintained separately from all other users.

» After storing the selection, the server returns the page to the
browser (Fig. 13.27(b)) and displays the user’s selection
and some information about the user’s unique session
(which we show just for demonstration purposes).

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.1 Cookies

» The page also includes links that allow the user to
choose between selecting another programming
language or viewing the Recommendations.aspx
page (Fig. 13.27(e)), which lists recommended books
pertaining to the programming language(s) that the user
selected previously.

» If the user clicks the link for book recommendations,
the information stored 1n the user’s unique
HttpSessionState object is read and used to form
the list of recommendations.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.2 Session Tracking with
HttpSessionState

» To test this application:
> Select Open Web Site... from the File menu.

> In the Open Web Site dialog, ensure that File System is
selected, then navigate to this chapter’s examples, select the
Sessions folder and click the Open Button.

> Select Options.aspx in the Solution Explorer, then type
Ctrl + F5 to execute the web application in your default web
browser.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

a) User selects a language from (7
€ ions - om
the Options.aspx page, /€ Sessions - Windows Internet Explorer X
"' Google ol

then presses Submit to send OO ~ |g, http://localh... v] 2] |‘1| X
BE R

the selection to the server

5 Favorites | @ Sessions

»

Select a programming language:

m

Gﬁ. Local intranet | Protected Mode: Off ¥ v H100% -~

Fig. 13.27 | ASPX file that presents a list of programming
languages. (Part | of 5.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

b) Options.aspx pageis |) 7
updated to hide the controls for C Se?’"’“" TR T PR s
selecting a language and to @O - |g‘ http://localh... = ‘9| X | |*Y Google o~
display the user’s selection; the ; — D
user clicks the hyperlink to | ¥ Faverites /@& Sessions ‘ | - o m L
return to the list of languages
and make another selection

b3

>

Welcome to Sessions! You selected Visual Basic
Your unique session 1D is: 0z10vp3tyfzcOxblyvrobOx;j
Timeout: 20 minutes.

Click here to choose anol;lger language

Click here to get book re\ Jmmendations

€i Local intranet | Protected Mode: Off 4 v H10% ~

Fig. 13.27 | ASPX file that presents a list of programming
languages. (Part 2 of 5.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

c) User selects another f)
language from the € Sessions - Windows Internet Explorer w3
Options.aspx page, then @O <]g, http://localh... v| = “1| X | |*9 Google P~
presses Submit to send the , : — R -

selection to the server | 3¢ Favorites | & Sessions | BB -2 @~

|

Select a programming language:
© Visual Basic
0 Visual C#

m

C++

) Java

®100% v

Gi. Local intranet | Protected Mode: Off 3 -

Fig. 13.27 | ASPX file that presents a list of programming
languages. (Part 3 of 5.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

d) Options.aspx page is
updated to hide the controls for
selecting a language and to
display the user’s selection; the
user clicks the hyperlink to get a
list of book recommendations

N Sesions . Windows Intemet Explorer _
@O L4 'g http://localh... v|] I‘7| X] “" Google s
. Favorites ‘ (& Sessions ‘ o~ 3 &~)

Welcome to Sessions! You selected C++
Your unique session ID is: 0z10yp3tyfzcOxblyvrobOxj
Timeout: 20 minutes.

Click here to choose another language

Click here to get]?ook recommendations

€& Local intranet | Protected Mode: Off fa v ®100% ~

Fig. 13.27 | ASPX file that presents a list of programming
languages. (Part 4 of 5.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

e) Recommendations.aspx
) displays the list of /& Book Recommendations - Windows Internet Explorer
recommended bocks based on @O ® |g http://localh... | & |4,| X | 2§ Google o~

the user’s selections : — — »
5.7 Favorites JgBookRecommendations | ‘ ﬁ ¥ > [g o

Recommendations

Visual Basic How to Program. ISBN#: 0-13-2152134
C++ How to Program. ISBN#: 0-13-611726-0

Click here to choose another language

€& Local intranet | Protected Mode: OFf 43 v ®100% ~

Fig. 13.27 | ASPX file that presents a list of programming
languages. (Part 5 of 5.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.2 Session Tracking with
HttpSessionState

» Creating the Web Site

> To begin, follow the steps in Section 13.4.1 to create an Empty
Web Site named Sessions, then add two Web Forms
named Options.aspx and Recommendations.aspXx to
the project.

> Set the Options.aspx document’s T1t1e property to
"Sessions' and the Recommendations.aspx
document’s T1t 1e property to "Book
Recommendations”.

> To ensure that Options.aspx is the first page to load for

this application, right click it in the Solution Explorer and
select Set As Start Page.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.3 Options.aspx: Selecting a
Programming Language

» The Options.aspx page Fig. 13.27(a) contains the
following controls arranged vertically:

> A Label with its (ID) property set to promptLabel and
its Text property setto ' Select a programming
language:". We used the techniques shown in Step 5 of
Section 13.4.1 to create a CSS style for this label named
. labelStyle, and set the style’s font-s1ize attribute to
lTarge and the font-weight attribute to bo'ld.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.3 Options.aspx: Selecting a
Programming Language

> The user selects a programming language by clicking one of
the radio buttons in a Radi1oButtonL1ist. Each radio button
has a Text property and a Va lue property. The Text
property is displayed next to the radio button and the Value
property represents a value that is sent to the server when the
user selects that radio button and submits the form. In this
example, we’ll use the Value property to represent the ISBN
for the recommended book.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.3 Options.aspx: Selecting a
Programming Language

> Create a RadioButtonList with its (ID) property set to
languagelList. Use the Listltem Collection Editor to add
five radio buttons with their TeXt properties set to Visual
Basic, Visual C#, C, C++ and Java, and their Value
properties set to 0-13-215213-4,0-13-605322-X, O0-
13-512356-2,0-13-611726-0and 0-13-605306-38,

respectively

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.3 Options.aspx: Selecting a
Programming Language

> A Button with its (ID) property set to submitButton
and its Text property set to Subm1 t. In this example, we’ll
handle this Button’s C11ck event. You can create its event
handler by double clicking the Button in Design view.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.3 Options.aspx: Selecting a
Programming Language

> A Label with its (ID) property set to responselLabel
and its TeXxt property setto "Welcome to Sessions!".
This Labe 1 should be placed immediately to the right of the
Button so that the Labe appears at the top of the page
when we hide the preceding controls on the page. Reuse the
CSS style you created in Step I by setting this Label’s
CssClass property to labelstyle.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.3 Options.aspx: Selecting a
Programming Language

> Two more Labe Is with their (ID) properties set to
1dLabel and timeoutLabel, respectively. Clear the text
in each Labe1’s Text property—you’ll set these
programmatically with information about the current user’s
session.

> AHyperLink with its (ID) property set to
languageLink and its Text property setto "Click here
to choose another language'. Setits Navigateurl
property by clicking the ellipsis next to the property in the
Properties window and selecting Options.aspx from the
Select URL dialog.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.3 Options.aspx: Selecting a
Programming Language

> AHyperLink with its (ID) property set to
recommendationsLink and its TeXt property set to
"Click here to get book recommendations”. Set its

NavigateuUr|l property by clicking the ellipsis next to the
property in the Properties window and selecting
Recommendations.aspx from the Select URL dialog.

o Initially, the controls in Steps 4—7 will not be displayed, so set
each control’s V1sible property to False.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.3 Options.aspx: Selecting a
Programming Language

» Session Property of a Page

> Every Web Form includes a user-specific
HttpSessionState object, which is accessible through
property Session of class Page.

> Throughout this section, we use this property to manipulate the
current user’s HttpSessionState object.

> When a page 1s first requested, a unique
HttpSessionState object is created by ASP.NET and
assigned to the Page’s Sessi10on property.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.3 Options.aspx: Selecting a
Programming Language

» Code-Behind File for Options.aspx
> Fig. 13.28 presents the code-behind file for the
Options.aspx page.
> When this page is requested, the Page Load event handler
(Ilines 9—40) executes before the response is sent to the client.

o Since the first request to a page 1s not a postback, the code in
lines 12—-39 does not execute the first time the page loads.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.3 Options.aspx: Selecting a
Programming Language

» Postback Processing

> When the user presses Submit, a postback occurs.

> The form 1s submitted to the server and the Page Load event
handler executes.

> Lines 15—-19 display the controls shown in Fig. 13.27(b) and
lines 22—24 hide the controls shown 1n Fig. 13.27(a).

> Next, lines 27-32 ensure that the user selected a language and,
if so, display a message in the responselLabel indicating
the selection.

> Otherwise, the message ''You did not select a
language" is displayed.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

I ' Fig. 13.28: Options.aspx.vb

2 ' Process user's selection of a programming Tanguage by displaying
3 ' Tinks and writing information in an HttpSessionState object.
4 Partial Class Options

5 Inherits System.Web.UI.Page

6

7 ' if postback, hide form and display links to make additional
8 ' selections or view recommendations

9 Protected Sub Page_Load(ByvVal sender As Object,

10 ByVal e As System.EventArgs) Handles Me.Load

11

12 If IsPostBack Then

13 ' user has submitted information, so display message

14 ' and appropriate hyperlinks

15 responselLabel.Visible = True

16 idLabel.Visible = True

17 timeoutlLabel.Visible = True

18 TanguagelLink.Visible = True

19 recommendationsLink.Visible = True

20

Fig. 13.28 | Process user's selection of a programming language by
displaying links and writing information in an HttpSessionState
object. (Part 1 of 3.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

21 ' hide other controls used to make Tanguage selection

22 promptLabel.Visible = False

23 Tanguagelist.Visible = False

24 submitButton.Visible = False

25

26 ' if the user made a selection, display it in responselLabel
27 If TanguagelList.SelectedItem IsNot Nothing Then

28 responselabel .Text &= &

29 Tanguagelist.SelectedItem.Text

30 Else

31 responselabel.Text &=

32 End If

33

34 " display session ID

35 idLabel.Text = & Session.SessionID
36

37 " display the timeout

38 timeoutlLabel.Text = & Session.Timeout &

39 End If

40 End Sub ' Page_Load

41

Fig. 13.28 | Process user's selection of a programming language by
displaying links and writing information in an HttpSessionState
object. (Part 2 of 3.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

42 ' record the user's selection in the Session

43 Protected Sub submitButton_Click(ByVal sender As Object,
44 ByVal e As System.EventArgs) Handles submitButton.Click
45

46 " if the user made a selection

47 If TanguagelList.SelectedItem IsNot Nothing Then

48 ' add name/value pair to Session

49 Session.Add(languagelList.SelectedItem.Text,

50 TanguagelList.SelectedItem.Value)

51 End If

52 End Sub ' submitButton_CTlick

53 End Class ' Options

Fig. 13.28 | Process user's selection of a programming language by
displaying links and writing information in an HttpSessionState
object. (Part 3 of 3.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.3 Options.aspx: Selecting a

Programming Language

>

The ASP.NET application contains information about the
HttpSessionState object (Session) for the current
client.

Property SessionID (displayed in line 35) contains the
unique session ID—a sequence of random letters and
numbers.

The first time a client connects to the web server, a unique
session ID 1s created for that client and a temporary cookie
1s written to the client so the server can i1dentify the client
on subsequent requests.

When the client makes additional requests, the client’s
session ID from that temporary cookie 1s compared with the
session IDs stored 1n the web server’s memory to retrieve
the client’s HttpSessionState object.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.3 Options.aspx: Selecting a

Programming Language

» HttpSessionState property Timeout (displayed in
line 38) specifies the maximum amount of time that an

Htt
1t’s d

nSessionState object can be inactive before
1scarded.

» By default, if the user does not interact with this web
application for 20 minutes, the HttpSessionState
object 1s discarded by the server and a new one will be
created 1f the user interacts with the application again.

» Figure 13.29 lists some common
Htt

pSessionState properties.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

Count Specifies the number of key/value pairs in the Session object.

IsNewSession Indicates whether this is a new session (that is, whether the session was
created during loading of this page).

Keys Returns a collection containing the Session object’s keys.

SessionID Returns the session’s unique ID.

Timeout Specifies the maximum number of minutes during which a session can

be inactive (that is, no requests are made) before the session expires. By
default, this property is set to 20 minutes.

Fig. 13.29 | HttpSessionState properties.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.3 Options.aspx: Selecting a
Programming Language
» Method submitButton_Click

o In this example, we wish to store the user’s selection in an
HttpSessionState object when the user clicks the
Submit Button.

> The submitButton_C11ck event handler (lines 43-52)
adds a key/value pair to the HttpSessionState object for
the current user, specifying the language chosen and the ISBN
number for a book on that language.

> The HttpSessionState object is a dictionary—a data
structure that stores key/value pairs.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.3 Options.aspx: Selecting a
Programming Language

» A program uses the key to store and retrieve the
associated value in the dictionary.

» We cover dictionaries in more depth in the online
Collections chapter.

» The key/value pairs in an HttpSessionState
object are often referred to as session items.

» They’re placed in an HttpSessionState object by
calling its Add method.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.3 Options.aspx: Selecting a
Programming Language

» If the user made a selection (line 47), lines 49-50 get
the selection and 1ts corresponding value from the
languageList by accessing its SelectedItem’s
Text and Value properties, respectively, then call
HttpSessionState method Add to add this
name/value pair as a session item 1in the
HttpSessionState object (Session).

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.3 Options.aspx: Selecting a

Programming Language

» If the application adds a session item that has the same
name as an item previously stored in the

HttpSessionState object, the session item is
replaced—the names 1n session items must be unique.

» Another common syntax for placing a session item in
the HttpSessionState object is
Session(Name) = Value.

» For example, we could have replaced lines 4950 with

Session(languageList.SelectedIitem.Text) =
languageList.SelectedItem.value

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

Software Engineering Observation 13.1

A Web Form should not use instance variables to
maintain client state information, because each new
request or postback 1s handled by a new instance of the
page. Instead, maintain client state information in

HttpSessionState objects, because such objects are
specific to each client.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

Software Engineering Observation 13.2

A benefit of using HttpSessionState objects (rather
than cookies) is that HttpSessionState objects can
store any type of object (not just Strings) as attribute
values. This provides you with increased flexibility in
determining the type of state information to maintain for
clients.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.4 Recommendations.aspx:
Displaying Recommendations Based on

Session Values
» After the postback of Options.aspX, the user may

request book recommendations.

» The book-recommendations hyperlink forwards the
user to the page Recommendations.aspx
(Fig. 13.277(e)) to display the recommendations based
on the user’s language selections.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.4 Recommendations.aspx:

Displaying Recommendations Based on

Session Values

» The page contains the following controls arranged
vertically:

> A Label with its (ID) property set to
recommendationsLabel and its Text property set to
"Recommendations: . We created a CSS style for this
label named . Tabe1Style, and set the font-size
attribute to Xx-Targe and the font-weight attribute to

bold. (See Step 5 in Section 13.4.1 for information on
creating a CSS style.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.4 Recommendations.aspx:

Displaying Recommendations Based on

Session Values
> A L1stBox with its (ID) property set to booksL1StBOX.

We created a CSS style for this label named

. 11stBoxStyle. In the Position category, we set the
width attribute to 450pXx and the he1ght attribute to
125px. The pX indicates that the measurement is in pixels.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.4 Recommendations.aspx: <

Displaying Recommendations Based on

Session Values

> AHyperLink with its (ID) property set to

lTanguageLink and its Text property setto "Click here
to choose another language'. Setits Navigateurl
property by clicking the ellipsis next to the property in the
Properties window and selecting Options.aspx from the
Select URL dialog. When the user clicks this link, the
Options.aspx page will be reloaded. Requesting the page
in this manner is not considered a postback, so the original
form in Fig. 13.27(a) will be displayed.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.4 Recommendations.aspx: <
Displaying Recommendations Based on
Session Values
» Code-Behind File for Recommendations.aspx
o Figure 13.30 presents the code-behind file for
Recommendations.aspx.
> Event handler Page_In1t (lines 7-27) retrieves the session

information.

o If a user has not selected a language in the Options.aspXx page,
the HttpSessionState object’s Count property will be O (line
11).

> This property provides the number of session items contained in a
HttpSessionState object.

o If the Count is 0, then we display the text No Recommendations
(line 20), clear the L1 StBoX and hide it (lines 21-22), and update
the Text of the HyperLink back to Options.aspx (line 25).

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

I ' Fig. 13.30: Recommendations.aspx.vb

2 ' Creates book recommendations based on a Session object.

3 Partial Class Recommendations

4 Inherits System.Web.UI.Page

5

6 ' read Session items and populate ListBox with any book recommendations
7 Protected Sub Page_Init(ByVal sender As Object,

8 ByVal e As System.EventArgs) Handles Me.Init

9

10 ' determine whether Session contains any information

11 If Session.Count <> O Then

12 For Each keyName In Session.Keys

13 ' use keyName to display one of Session's name/value pairs
14 booksListBox.Items.Add(keyName &

15 & Session(keyName))

16 Next

17 Else

18 ' if there are no session items, no language was chosen, so
19 ' display appropriate message and clear and hide booksListBox
20 recommendationsLabel.Text =
21 booksListBox.Items.Clear()
22 booksListBox.Visible = False

Fig. 13.30 | Session data used to provide book recommendations to
the user. (Part | of 2.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

23

24 ' modify TanguagelLink because no Tanguage was selected
25 TanguagelLink.Text =

26 End If

27 End Sub ' Page_Init

28 End Class ' Recommendations

Fig. 13.30 | Session data used to provide book recommendations to
the user. (Part 2 of 2.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.7.4 Recommendations.aspx: <
Displaying Recommendations Based on
Session Values
» If the user chose at least one language, the loop in lines
1216 iterates through the HttpSessionState
object’s keys (line 12) by accessing the
HttpSessionState’s Keys property, which returns
a collection containing all the keys in the session.
» Lines 1415 concatenate the keyName, the String
" How to Program.
» ISBN#: " and the key’s corresponding value, which is
returned by Session(keyName).
» This String is the recommendation that is added to
the L1StBOX.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.8 Case Study: Database-Driven
ASP.NET Guestbook

» Many websites allow users to provide feedback about
the website 1n a guestbook.

» Typically, users click a link on the website’s home page
to request the guestbook page.

» This page usually consists of a form that contains fields
for the user’s name, e-mail address, message/feedback
and so on.

» Data submitted on the guestbook form 1s then stored in
a database located on the server.

» In this section, we create a guestbook Web Form
application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.8 Case Study: Database-Driven
ASP.NET Guestbook

» The GUI (Fig. 13.31) contains a GridView data control,
which displays all the entries in the guestbook in
tabular format.

» This control is located in the Toolbox’s Data section.

» We explain how to create and configure this data
control shortly.

» The Gri1dV1iew displays abc in Design mode to
indicate data that will be retrieved from a data source at
runtime.

» You’ll learn how to create and configure the
Gridview shortly.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

body| -
Please leave a message in our guestbook: I
Name: |
E-mail: |
Tell the world: -
=
Submit | Clear | 3
Date Name Email Message
abc abc abc abe
GridView abc abc abc abc
control abc abc abc abe
abc abc abc abc
abc abc abc abc L4
1 LingDataSource - messagesLingDataSource
4 b
o split | @ Source | <body> [<form#form>|[<div>|[<table.stylel > [<tr>][<td> | 0

Fig. 13.31 | Guestbook application GUI in Design mode.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.8 Case Study: Database-Driven
ASP.NET Guestbook

» The Guestbook Database
> The application stores the guestbook information in a SQL
Server database called Guestbook . mdf located on the web
server.
> (We provide this database in the databases folder with this
chapter’s examples.) The database contains a single table
named Messages.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.8 Case Study: Database-Driven
ASP.NET Guestbook

» Testing the Application
> To test this application: Select Open Web Site... from the

File menu.

> In the Open Web Site dialog, ensure that File System is
selected, then navigate to this chapter’s examples, select the
Guestbook folder and click the Open Button.

> Select Guestbook.aspx in the Solution Explorer, then

type Ctrl + F5 to execute the web application in your default
web browser.

» Figure 13.32(a) shows the user submitting a new entry.

» Figure 13.32(b) shows the new entry as the last row in
the Gridview.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

a) User enters

T —— ==
data for the - - $

name, e-mail and @O' & - [&[4[x [[49 Googie =

message, then — ‘@Guestbook {_| M v B -) @ v Pagev Safety~v Tools~ @~ »

presses Submit to
send the datato || Please leave a message in our guestbook:

the server
Name: Mike Brown
E-mail: mbrown@bug2bug.com
Tell the world: Wonderful use of ASP.NET! -

Date Name Email Message
1/27/2010 Bob Green bgreen@bug2bug.com Great site!
1/28/2010 Sue Black sblack@bug2bug.com I love the site! Keep up the good work!
1/29/2010 Liz White hwhite@bug2bug com Very useful information. Will visit again soon.

Done € Local intranet | Protected Mode: Off 3 v ®|100% ~

Fig. 13.32 | Sample execution of the Guestbook application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

b) Server stores
the data in the
database, then

refreshes the
GridView with
the updated data

6 Gubook - Windows Inemet plorer B

<\p Favorites {gGustbook ‘7‘ @ B - @ v Pagew Safety~ Tools~ @, »

L

::' Google Fe '1

O~ e R | 2[4 [x

Please leave a message in our guestbook:

Date Name Email Message
1/27/2010 Bob Green bgreen@bug2bug.com Great site!
1/28/2010 Sue Black sblack@bug2bug com I love the site! Keep up the good work!
1/29/2010 Liz White Iwhite @bug2bug.com Very useful information. Will visit again soon.
2/2/2010 Mike Brown mbrown@bug2bugcom Wonderful use of ASP NET!

Done G. Local intranet | Protected Mode: Off v ®10% ~

Fig. 13.32 | Sample execution of the Guestbook application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.1 Building a Web Form that Displays
Data from a Database

» We now explain how to build this GUI and set up the
data binding between the GridV1ew control and the
database.

» Many of these steps are similar to those performed in
Chapter 12 to access and interact with a database in a
Windows application.

» We discuss the code-behind file in Section 13.8.2.

» To build the guestbook application, perform the
following steps:

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.1 Building a Web Form that Displays
Data from a Database

» Step 1: Creating the Web Site

> To begin, follow the steps in Section 13.4.1 to create an Empty

Web Site named Guestbook then add a Web Form named
Guestbook.aspx to the project.

> Set the document’s T1t | e property to "Guestbook".

> To ensure that Guestobook . aspx loads when you execute

this application, right click it in the Solution Explorer and
select Set As Start Page.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.1 Building a Web Form that Displays
Data from a Database

» Step 2: Creating the Form for User Input
> In Design mode, add the text P1ease leave a message
1n our guestbook:, then use the Block Format
ComboBoX in the IDE’s toolbar to change the text to Heading
3 format.
o Insert a table with four rows and two columns, configured so
that the text in each cell aligns with the top of the cell.
> Place the appropriate text (see Fig. 13.31) in the top three cells
in the table’s left column.
> Then place TextBoXes named nameTeXtBOX,
emallTextBox and messageTextBoxX in the top three
table cells in the right column.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.1 Building a Web Form that Displays
Data from a Database

» Configure the TextBoXes as follows:
> Set the nameTextBox’s width to 300px.
> Set the ema1 1 TextBox’s width to 300px.

> Set the messageTextBox’s width to 300pXx and height to
100px. Also set this control’s TextMode property to
MultiL1ne so the user can type a message containing
multiple lines of text.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.1 Building a Web Form that Displays
Data from a Database

» Finally, add Buttons named submitButton and
c learButton to the bottom-right table cell.

» Set the buttons’ Text properties to Subm1t and
Clear, respectively.

» We discuss the buttons’ event handlers when we
present the code-behind file.

» You can create these event handlers now by double
clicking each Button in Design view.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.1 Building a Web Form that Displays
Data from a Database

» Step 3: Adding a Gr1dV1ew Control to the Web Form

> Add a GridView named messagesGridView that will display
the guestbook entries.

> This control appears in the Data section of the Toolbox.

> The colors for the GridV1ew are specified through the Auto
Format...

o link in the GridView Tasks smart-tag menu that opens when you
place the GridV1ew on the page.

o Clicking this link displays an AutoFormat dialog with several
choices.

o In this example, we chose Professional.

> We show how to set the Gr1dV1ew’s data source (that is, where it
gets the data to display in its rows and columns) shortly.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.1 Building a Web Form that Displays
Data from a Database

» Step 4: Adding a Database to an ASPNET Web
Application
> To use a SQL Server Express database file in an ASP.NET web

application, you must first add the file to the project’s
App_Data folder.

° For security reasons, this folder can be accessed only by the
web application on the server—<clients cannot access this
folder over a network.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.1 Building a Web Form that Displays
Data from a Database

» The web application interacts with the database on
behalt of the client.

» The Empty Web Site template does not create the
App_Data folder.

» To create it, right click the project’s name 1n the
Solution Explorer, then select Add ASP.NET Folder

> App_Data.

» Next, add the Guestbook .mdf file to the
App_Data folder.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.1 Building a Web Form that Displays
Data from a Database

» You can do this in one of two ways:

> Drag the file from Windows Explorer and drop it on the
App_Data folder.

> Right click the App_Data folder in the Solution Explorer
and select Add Existing Item... to display the Add Existing
Item dialog, then navigate to the databases folder with this
chapter’s examples, select the Guestbook . mdf file and
click Add. [Note: Ensure that Data Files is selected in the
ComboBoX above or next to the Add Button in the dialog;

otherwise, the database file will not be displayed in the list of
files.]

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.1 Building a Web Form that Displays
Data from a Database

» Step 5: Creating the LINQ to SQL Classes

> As in Chapter 12, you’ll use LINQ to interact with the
database.

> To create the LINQ to SQL classes for the Guestbook
database:

> Right click the project in the Solution Explorer and select
Add New Item... to display the Add New Item dialog.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.1 Building a Web Form that Displays
Data from a Database

o In the dialog, select LINQ to SQL Classes, enter
Guestbook.dbml as the Name, and click Add. A dialog
appears asking 1f you would like to put your new LINQ to SQL
classes in the App_Code folder; click Yes. The IDE will
create an App_Code folder and place the LINQ to SQL
classes information in that folder.

> In the Database Explorer window, drag the Guestbook
database’s Messages table from the Database Explorer
onto the Object Relational Designer. Finally, save your
project by selecting File > Save All.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.1 Building a Web Form that Displays
Data from a Database

» Step 6: Binding the Gr1dV1ew to the Messages

Table of the Guestbook Database

> You can now configure the Gr1dV1iew to display the
database’s data.

> Open the GridView Tasks smart-tag menu, then select <New
data source...> from the Choose Data Source ComboBoXx
to display the Data Source Configuration Wizard dialog.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.1 Building a Web Form that Displays
Data from a Database

o In this example, we use a LingDataSource control that allows
the application to interact with the Guestbook .mdf
database through LINQ. Select LINQ, then set the ID of the
data source to messagesLingDataSource and click OK
to begin the Configure Data Source wizard.

> In the Choose a Context Object screen, ensure that
GuestbookDataContextis selected in the ComboBOX,
then click Next >.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.1 Building a Web Form that Displays
Data from a Database

- The Configure Data Selection screen (Fig. 13.33) allows you
to specify which data the L1ngDataSource should retrieve
from the data context. Your choices on this page design a
Select LINQ query. The Table drop-down list identifies a
table in the data context. The Guestbook data context
contains one table named Messages, which is selected by
default. If you haven’t saved your project since creating your
LINQ to SQL classes (Step 5), the list of tables will not appear.
In the Select pane, ensure that the checkbox marked with an
asterisk (*) is selected to indicate that you want to retrieve all
the columns in the Messages table.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

“=

Configure Data Source - messagesLinqDataSource e

l Configure Data Selection

o

Table:
[‘ Aessages (Table<M

ge>) v]

GroupBy:
[[None] —]

Select:

w* Where...
[7] MessagelD

[] Date OrderBy...
[7] Name

[Email Advanced...
[] Message

1

Fig. 13.33 | Configuring the query used by the LingDataSource
to retrieve data.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.1 Building a Web Form that Displays
Data from a Database

> Click the Advanced... button, then select the Enable the
LingDataSource to perform automatic inserts CheckBox
and click OK. This configures the L1ngDataSource control
to automatically insert new data into the database when new
data is inserted in the data context. We discuss inserting new
guestbook entries based on users’ form submissions shortly.

o Click Finish to complete the wizard.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.1 Building a Web Form that Displays
Data from a Database

» A control named messagesLingDataSource now
appears on the Web Form directly below the
Gridview (Fig. 13.34).

» This control is represented in Design mode as a gray
box containing its type and name.

» 1t will not appear on the web page—the gray box
simply provides a way to manipulate the control
visually through Design mode—similar to how the
objects in the component tray are used in Design mode
for a Windows Forms application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.1 Building a Web Form that Displays
Data from a Database

» The GridVi1ew now has column headers that
correspond to the columns in the Messages table.

» The rows each contain either a number (which signifies
an autoincremented column) or abc (which indicates
string data).

» The actual data from the Guestbook .mdf database
file will appear in these rows when you view the ASPX
file in a web browser.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.1 Building a Web Form that Displays
Data from a Database

» Step 7: Moditying the Columns of the Data Source
Displayed in the Gridview

o It’s not necessary for site visitors to see the MessageID
column when viewing past guestbook entries—this column 1s
merely a unique primary key required by the Messages table
within the database.

> So, let’s modify the GridView to prevent this column from
displaying on the Web Form.

> In the GridView Tasks smart tag menu, click Edit Columns
to display the Fields dialog (Fig. 13.35).

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

|body| a
Please leave a message in our guestbook: I

Name: |
E-mail:
Tell the world: -

m,

Submit | Clearl
MessagelD Date Name Email Message

abc abc abc abc
abc abc abec abe
abc abc abc abc
abc abc abc abc

abc abc abc abc

Li ng DataSource LingDataSource - messagesLingDataSource
control =

4 »

o Split | @ Source | [4][<div>|[<p>] <asp:GriaviewsGrigview1> O

W R = O

Fig. 13.34 | Design mode displaying LingDataSource control for
a GridView.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

Fig. 13.35 | Removing the MessageID column from the
GridView.

P~

Fields

=]
Available fields: BoundField properties:
:%] (All Fields) - = | =]
=&l BoundField
1 4 Accessibility -
i -[E] MessagelD = . 3
= Date | AccessibleHeaderText
Name o L
Email FooterText .
¢ L[E] Message HeaderlmageUrl 1
L5 CheclkRoxField i | HeaderText MessagelD
4 Behavior
ApplyFormatInEditMo¢ False
Selected hiekds: ConvertEmptyStringTo True
HtmlEncode True
% 5sa-ge![) HtmlEncodeFormatStri True
= ate E InsertVisible False
=_'| Ea’“r NullDisplayText
- mai a1 IR F o2
& Message : Es’ HeaderText
The text within the header of this field.
[7] Auto-generate fields Convert this field into a TemplateField
Refresh Schema
[ok || conce |

© 1992-2011 by Pearson Education, Inc.

All Rights Reserved.

<

13.8.1 Building a Web Form that Displays
Data from a Database

> Select MessagelD in the Selected fields pane, then click the
Button. This removes the MessageID column from the
Gridview.

> Click OK to return to the main IDE window, then set the
W1 dth property of the Gridview to 650px.

» The GridV1iew should now appear as shown in
Fig. 13.31.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.2 Modifying the Code-Behind File for
the Guestbook Application

» After building the Web Form and configuring the data
controls used in this example, double click the Submit and

Clear buttons in Design view to create their corresponding
C11ck event handlers in the code-behind file (Fig. 13.36).

» The IDE generates empty event handlers, so we must add
the appropriate code to make these buttons work properly.

» The event handler for clearButton (lines 36-41) clears
each TexXtBoOX by setting its Te@XT property to an empty
string.

» This resets the form for a new guestbook submission.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

I ' Fig. 13.36: Guestbook.aspx.vb
2 ' Code-behind file that defines event handlers for the guestbook.
3 Partial Class Guestbook
4 Inherits System.Web.UI.Page
5
6 ' Submit Button adds a new guesthbook entry to the database,
7 ' clears the form and displays the updated 1ist of guestbook entries
8 Protected Sub submitButton_Click(ByVal sender As Object, _
9 ByVal e As System.EventArgs) Handles submitButton.Click
10
11 ' create dictionary of parameters for inserting
12 Dim insertParameters As New ListDictionary()
13
14 ' add current date and the user's name, e-mail address and message
15 ' to dictionary of insert parameters
16 insertParameters.Add(, Date.Now.ToShortDateString())
17 insertParameters.Add(, hameTextBox.Text)
18 insertParameters.Add(, emailTextBox.Text)
19 insertParameters.Add(, messageTextBox.Text)
20

Fig. 13.36 | Code-behind file for the guestbook application. (Part | of
2.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

21 ' execute an INSERT LINQ statement to add a new entry to the

22 ' Messages table in the Guestbook data context that contains the
23 " current date and the user's name, e-mail address and message
24 messageslLingDataSource.Insert(insertParameters)

25

26 ' clear the TextBoxes

27 nameTextBox.Text =

28 emailTextBox.Text =

29 messageTextBox.Text =

30

31 ' update the GridView with the new database table contents

32 messagesGridView.DataBind()

33 End Sub ' submitButton_Click

34

35 " Clear Button clears the Web Form's TextBoxes

36 Protected Sub clearButton_Click(Byval sender As Object, _

37 ByVal e As System.EventArgs) Handles clearButton.Click

38 nameTextBox.Text =

39 emailTextBox.Text =

40 messageTextBox.Text =

41 End Sub ' clearButton_Click

42 End Class ' Guestbook

Fig. 13.36 | Code-behind file for the guestbook application. (Part 2 of
2.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.3 Modifying the Code-Behind File for
the Guestbook Application

» Lines 8-33 contain submitButton’s event-handling
code, which adds the user’s information to the
Guestbook database’s Messages table.

» To use the values of the TextBoXes on the Web Form
as the parameter values inserted into the database, we
must create a ListDictionary of insert parameters that
are key/value pairs.

» Line 12 creates a L1stD1ctionary object.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.3 Building a Web Form that Displays
Data from a Database

» Lines 16—19 used the L1stD1ctionary’s Adc
method to store key/value pairs that represent each of
the four insert parameters—the current date and the
user’s name, e-mail address, and message.

» Invoking the LThgDataSource method Insert
(line 24) inserts the data 1n the data context, adding a
row to the Messages table and automatically
updating the database.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

13.8.3 Building a Web Form that Displays
Data from a Database

» We pass the L1SstD1ctionary object as an
argument to the Insert method to specity the insert
parameters.

» After the data 1s inserted into the database, lines 27-29
clear the TextBoXes, and line 32 invokes
messagesGridVview’s DataBind method to refresh
the data that the Gr1dV1ew displays.

» This causes messagesLingDataSource (the
GridView’s source) to execute its Se l ect command
to obtain the Messages table’s newly updated data.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.9 Online Case Study: ASP.NET AJAX

» In the online chapter, Web App Development: A Deeper Look,
you learn the difference between a traditional web application
and an Ajax (Asynchronous JavaScript and XML) web
application.

» You also learn how to use ASP.NET AJAX to quickly and easily
improve the user experience for your web applications, giving
them responsiveness comparable to that of desktop applications.

» To demonstrate ASP.NET AJAX capabilities, you enhance the
validation example by displaying the submitted form information
without reloading the entire page.

» The only modifications to this web application appear in
Validation.aspx file.

» You use Ajax-enabled controls to add this feature.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

13.10 Online Case Study: Password-
Protected Books Database Application

» In the online chapter, Web App Development: A Deeper
Look, we include a web application case study in which a
user logs into a password-protected website to view a list of
publications by a selected author.

» The application consists of several pages and provides
website registration and login capabilities.

» You’ll learn about ASP.NET master pages, which allow you
to specify a common look-and-feel for all the pages in your

app.

» We also introduce the Web Site Administration Tool and
use 1t to configure the portions of the application that can be
accessed only by users who are logged into the website.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

