Chapter 30
JavaServer™ Faces Web
Applications, Part 2

Java How to Program, 9/e

© Copyright 1992-2012 by Pearson Education, Inc. All Rights
Reserved.

Chapter 27: JavaServer™

Faces Web Applications, Part 2

Internet & World Wide Web
How to Program, 5/e

Note. This chapter is a copy of Chapter 30 of our book Java How to
Program, 9/e. For that reason, we simply copied the PowerPoint
slides for this chapter and did not re-numb er them

© 1992-2011 by Pearson Education, Inc. All Rights Reserved.

OBJECTIVES

In this chapter you'll learn:

m To access databases from |SF applications.

m The basic principles and advantages of Ajax technology.

m To use Ajax in a JSF web app.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

30.1 Introduction

30.2 Accessing Databases in Web Apps

30.2.1 Setting Up the Database

30.2.2 @ManagedBean Class AddressBean
30.2.3 1index.xhtm1 Facelets Page

30.24 addentry.xhtml Facelets Page

30.3 Ajax
30.4 Adding Ajax Functionality to the Validation App
30.5 Wrap-Up

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

a) Table of addresses displayed when the AddressBook app is first requested

[Address Book X

C A | © localhost:8080/AddressBook/ bR §

[=) JavaSE6 AP1 [Java SET API (3 Other bookmarks
Address Book

First Name

Sue Black 1000 Michigan Ave. Chicago IL 60605

James Blue 1000 Harbor Ave. Seattle WA 98116

Mike Brown 3600 Delmar Blvd. St. Louis MO 63108

Meg Gold 1200 Stout St. Denver CcO 80204

John Gray 500 South St. Philadelphia PA 19147

Bob Green 5 Bay St. San Francisco CA 94133

Mary Green 300 Massachusetts Ave. Boston MA 02115

Liz White 100 5th Ave. New York NY 10011

Fig. 30.1 | Sample outputs from the AddressBook app. (Part | of 3.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

b) Form for adding an entry

[Address Book: Add Entry

£ C M O localhost:8080/AddressBook/faces/index.xhtml;jsessionid=646d82dffflabcf25057ff8990¢ S | W

[=) Java SE6 API [Java SE7 API ("7 Other bookmarks

Address Book: Add Entry

First name: }Jessica

Last name: | Magenta

Street: 1 Main Street

City: ‘SomeCity

State: FL

Zipcode: 12345

Save Addresg
Return to Addresses

Fig. 30.1 | Sample outputs from the AddressBook app. (Part 2 of 3.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

¢) Table of addresses updated with the new entry added in Part (b)

[") Address Book -

<« C A | © localhost:8080/AddressBook/faces/addentry.xhtm bk diE N
[=] JavasEs AP [Java SET API (] Other bookmarks
Address Book

First Name Last Name

Sue Black 1000 Michigan Ave. Chicago IL 60605

James Blue 1000 Harbor Ave. Seattle WA 98116

Mike Brown 3600 Delmar Blvd. St. Louis MO 63108

Meg Gold 1200 Stout St. Denver co 80204

John Gray 500 South St. Philadelphia PA 19147

Bob Green 5 Bay St. San Francisco CA 94133

Mary Green 300 Massachusetts Ave. Boston MA 02115

Jessica Magenta 1 Main Street SomeCity FL 12345

Liz White 100 5th Ave. New York NY 10011

Fig. 30.1 | Sample outputs from the AddressBook app. (Part 3 of 3.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Common Tasks

[& Registration
&: GlassFish News
Enterprise Server
» [& Applications
Lifecycle Modules
v | Resources
v [JDBC
> JDBC Resources
» [[5 Connection Pools

m

Fig. 30.2 | Common Tasks window in the GlassFish server configuration web

page.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

New JDBC Connection Pool (Step 1 of 2)

Identify the general settings for the connection pool
* Indicates required field
General Settings

Name: *

Resource Type: [j,ax sql DataSource [~]

Must be specified if the datasource class implements more than 1 of the interface

Database Vendor: [jaop8 [+

Select or enter a database vendor

Fig. 30.3 | New JDBC Connection Pool (Step 1 of 2) page.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Additional Properties (18)

@J[E_j | Delete Properties
’ Name + | Value ™
[T | ConnectionAttributes .create=true
[T | CreateDatabase ‘
[] |DataSourceName
[] |DatabaseName ‘addressbook
[C] |Description
[|LeginTimeout 0
[T |Password APP
[7] |PortNumber 1527
[7] |RetrieveMessageText ‘true
[C] | SecurityMechanism 4
[[] |Serverhame localhost
[[] | ShutdownDatabase
0 [ssl off
[7] | TraceDirectary '
[C] | TraceFile
[T] | TraceFileAppend false
[T |TraceLevel -1
[T |User APP

Fig. 30.4 | New JDBC Connection Pool (Step 2 of 2) page.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

New JDBC Resource [oK |

Specify a unique JNDI name that identifies the JDBC resource you want to create. The name must
contain only alphanumeric, underscore, dash, or dot characters

JNDI Name: * [jdbc/addressbook

Pool Name: [a4dressBoakPaol [=]

Use the JDBC Connection Pools page to create new pools
Description:
Status: Enabled

Additional Properties (0)
pert: Delete Properties

I Name I Value Description
No items found.

Fig. 30.5 | New JDBC Resource page.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

|

2

3

4

5 import
6 import
7 import
8 import
9 import
10 1import
Il dimport
12 1import
13

java.
java.
java
java.
javax
javax
javax
javax

// AddressBean.java
// Bean for interacting with the AddressBook database
package addressbook;

sgl.Connection;
sgl.PreparedStatement;

.sgl.ResultSet;

sql.SQLException;
.annotation.Resource;
.faces.bean.ManagedBean;
.sql.DataSource;
.sql.rowset.CachedRowSet;

14 @ManagedBean(name="addressBean™)
I5 public class AddressBean

16 {

Fig. 30.6 | AddressBean interacts with a database to store and retrieve addresses.
(Part | of 10.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

// instance variables that represent one address

private
private
private
private
private
private

String
String
String
String
String
String

firstName;
TastName;
street;
city;
state;
zipcode;

// allow the server to inject the DataSource
@Resource(name="7jdbc/addressbhook™)
DataSource dataSource;

// get the first name
public String getFirstName()

{

return firstName;
} // end method getFirstName

Fig. 30.6 | AddressBean interacts with a database to store and retrieve addresses.
(Part 2 of 10.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

35 // set the first name

36 public void setFirstName(String firstName)
37 {

38 this.firstName = firstName;
39 } // end method setFirstName
40

41 // get the last name

42 public String getLastName()
43 {

44 return lastName;

45 } // end method getlLastName
46

47 // set the last name

48 public void setLastName(String lastName)
49 {

50 this.lastName = TastName;
51 } // end method setLastName
52

53 // get the street

54 public String getStreet()

55 {

36 return street;

57 } // end method getStreet

Fig. 30.6 | AddressBean interacts with a database to store and retrieve addresses.
(Part 3 of 10.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

58

59 // set the street

60 public void setStreet(String street)
61 {

62 this.street = street;

63 } // end method setStreet

64

65 // get the city

66 public String getCity()

67 {

68 return city;

69 } // end method getCity

70

71 // set the city

72 pubTic void setCity(String city)
73 {

74 this.city = city;

75 } // end method setCity

76

Fig. 30.6 | AddressBean interacts with a database to store and retrieve addresses.
(Part 4 of 10.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

77 // get the state

78 public String getState()
79 {

80 return state;

81 } // end method getState
82

83 // set the state

84 public void setState(String state)
85 {

86 this.state = state;

87 } // end method setState
88

89 // get the zipcode

90 public String getZipcode()
91 {

92 return zipcode;

93 } // end method getZipcode
94

Fig. 30.6 | AddressBean interacts with a database to store and retrieve addresses.
(Part 5 of 10.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

95 // set the zipcode

96 public void setZipcode(String zipcode)

97 {

98 this.zipcode = zipcode;

99 } // end method setZipcode

100

101 // return a ResultSet of entries

102 public ResultSet getAddresses() throws SQLException

103 {

104 // check whether dataSource was injected by the server
105 if (dataSource == null)

106 throw new SQLException("Unable to obtain DataSource”);
107

108 // obtain a connection from the connection pool

109 Connection connection = dataSource.getConnection();
110

Fig. 30.6 | AddressBean interacts with a database to store and retrieve addresses.
(Part 6 of 10.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

1 // check whether connection was successful

112 if (connection == null)

13 throw new SQLException("Unable to connect to DataSource"”);
114

115 try

116 {

17 // create a PreparedStatement to insert a new address book entry
18 PreparedStatement getAddresses = connection.prepareStatement(
119 "SELECT FIRSTNAME, LASTNAME, STREET, CITY, STATE, ZIP " +
120 "FROM ADDRESSES ORDER BY LASTNAME, FIRSTNAME");

121

122 CachedRowSet rowSet = new com.sun.rowset.CachedRowSetImpl();
123 rowSet.populate(getAddresses.executeQuery());

124 return rowSet;

125 } // end try

126 finally

127 {

128 connection.close(); // return this connection to pool

129 } // end finally

130 } // end method getAddresses

131

Fig. 30.6 | AddressBean interacts with a database to store and retrieve addresses.
(Part 7 of 10.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

132 // save a new address book entry

133 public String save() throws SQLException

134 {

135 // check whether dataSource was injected by the server

136 if (dataSource == null)

137 throw new SQLException("Unable to obtain DataSource"”);
138

139 // obtain a connection from the connection pool

140 Connection connection = dataSource.getConnection();

141

142 // check whether connection was successful

143 if (connection == null)

144 throw new SQLException("Unable to connect to DataSource™);
145

Fig. 30.6 | AddressBean interacts with a database to store and retrieve addresses.
(Part 8 of 10.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

146 try

147 {

148 // create a PreparedStatement to insert a new address book entry
149 PreparedStatement addEntry =

150 connection.prepareStatement("INSERT INTO ADDRESSES ™ +
151 "(FIRSTNAME, LASTNAME,STREET,CITY,STATE,ZIP)" +

152 "WALUES (7, 72, 2, 7?2, 7?2, 2)");

153

154 // specify the PreparedStatement's arguments

155 addEntry.setString(1, getFirstName());

156 addEntry.setString(2, getLastName());

157 addEntry.setString(3, getStreet());

158 addEntry.setString(4, getCity());

159 addEntry.setString(5, getState());

160 addEntry.setString(6, getZipcode());

161

162 addEntry.executeUpdate(); // insert the entry

163 return "index"; // go back to index.xhtml page

164 } // end try

Fig. 30.6 | AddressBean interacts with a database to store and retrieve addresses.
(Part 9 of 10.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

165 finally

166 {
167 connection.close(); // return this connection to pool
168 } // end finally

169 } // end method save
170 } // end class AddressBean

Fig. 30.6 | AddressBean interacts with a database to store and retrieve addresses.
(Part 10 of 10.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

I <?xml version="1.0" encoding='UTF-8"' 7>

2

3 <!-- index.html -->

4 <!-- Displays an h:dataTable of the addresses in the address book -->
5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

6 "http://waww.w3.0rg/TR/xhtml11/DTD/xhtml1l-transitional.dtd">

7 <html xmlns="http://www.w3.0rg/1999/xhtml1"

8 xmIns:h="http://java.sun.com/jsf/html"

9 xmlIns:f="http://java.sun.com/jsf/core">

10 <h:head>

11 <title>Address Book</title>

12 <h:outputStylesheet name="style.css" library="css"/>

13 </h:head>

14 <h:body>

15 <hl>Address Book</hl>

16 <h:form>

17 <p><h:commandButton value="Add Entry" action="addentry"/></p>
18 </h:form>

19 <h:dataTable value="#{addressBean.addresses}"” var="address"
20 rowClasses="oddRows,evenRows" headerClass="header"
21 styleClass="table"” cellpadding="5" cellspacing="0">

Fig. 30.7 | Displays an h:dataTable of the addresses in the address book. (Part |
of 3.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

22 <h:column>

23 <f:facet name="header">First Name</f:facet>
24 #{address.FIRSTNAME}

25 </h:column>

26 <h:column>

27 <f:facet name="header">Last Name</f:facet>
28 #{address.LASTNAME}

29 </h:column>

30 <h:column>

31 <f:facet name="header">Street</f:facet>

32 #{address.STREET}

33 </h:column>

34 <h:column>

35 <f:facet name="header">City</f:facet>

36 #{address.CITY}

37 </h:column>

38 <h:column>

39 <f:facet name="header">State</f:facet>

40 #{address.STATE}

41 </h:column>

Fig. 30.7 | Displays an h:dataTab1le of the addresses in the address book. (Part 2
of 3.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

42 <h:column>

43 <f:facet name="header">Zip code</f:facet>
44 #{address.ZIP}

45 </h:column>

46 </h:dataTable>

47 </h:body>

48 </html>

Fig. 30.7 | Displays an h:dataTable of the addresses in the address book. (Part 3
of 3.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

I <?xml version="1.0" encoding='UTF-8"' 7>

2

3 <!-- addentry.html -->

4 <!-- Form for adding an entry to an address book -->

5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
6 "http://waww.w3.0rg/TR/xhtml11/DTD/xhtml1l-transitional.dtd">

7 <html xmlns="http://www.w3.0rg/1999/xhtml1"

8 xmIns:h="http://java.sun.com/jsf/html">

9 <h:head>

10 <title>Address Book: Add Entry</title>

11 <h:outputStylesheet name="style.css" library="css"/>

12 </h:head>

13 <h:body>

14 <h1l>Address Book: Add Entry</hl>

15 <h:form>

16 <h:panelGrid columns="3">

17 <h:outputText value="First name:"/>

18 <h:inputText id="firstNamelnputText" required="true"
19 requiredMessage="Please enter first name"”
20 value="#{addressBean.firstName}" maxlength="30"/>
21 <h:message for="firstNameInputText" styleClass="error"/>
22 <h:outputText value="Last name:"/>

Fig. 30.8 | Form for adding an entry to an address book. (Part | of 3.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

<h:
<h:
<h:

<h:
<h:
<h:

sinputText id="lastNameInputText” required="true"

requiredMessage="Please enter last name"
value="#{addressBean.lastName}" maxlength="30"/>

:message for="TlastNameInputText" styleClass="error"/>
:outputText value="Street:"/>
rinputText id="streetInputText” required="true"

requiredMessage="Please enter the street address”
value="#{addressBean.street}" maxlength="150"/>

:message for="streetInputText” styleClass="error"/>
;outputText value="City:"/>
sinputText id="citylnputText" required="true"

requiredMessage="Please enter the city"”
value="#{addressBean.city}" maxlength="30"/>
message for="cityInputText” styleClass="error"/>
outputText value="State:"/>

inputText id="statelnputText"” required="true"
requiredMessage="Please enter state"
value="#{addressBean.state}" maxlength="2"/>
message for="statelnputText" styleClass="error"/>
outputText value="Zipcode:"/>

inputText id="zipcodelnputText" required="true"
requiredMessage="Please enter zipcode”
value="#{addressBean.zipcode}" maxlength="5"/>

Fig. 30.8 | Form for adding an entry to an address book. (Part 2 of 3.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

46 <h:message for="zipcodeInputText" styleClass="error"/>

47 </h:panelGrid>

48 <h:commandButton value="Save Address"

49 action="#{addressBean.save}"/>

50 </h:form>

51 <h:outputLink value="1index.xhtml">Return to Addresses</h:outputLink>
52 </h:body>

53 </html>

Fig. 30.8 | Form for adding an entry to an address book. (Part 3 of 3.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2 6
§ Process _ | Generate Process _ | Generate
g request " | response request " | response
A
3 7
Page 2 Page 3
Form | =— Form | —
Request | —_— Request 2 —
A — | Form A —— | Form
¥ ¥
Page | Page Page 2 8 Page Page 3
- —] Form | — reloading Form | — reloading Form | —
@ — p— —
o - -
—— | Form —— | Form B —— | Form

Fig. 30.9 | Classic web application reloading the page for every user interaction.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Process Generate Process Generate
_b _b
request | response request 2 response

V) AN

Server

5 d#a dé(a 7
4

2
User interaction initiates Partial
asynchronous request page update
! /
T T
Request object \ / ! K
Callback function ; Ly ey 8/
€ i R Form | — Request abject
.§ Response processing I_,_ Update |- 0 — Update q) .
O Callback function
— | Form [*L=——=I"] Response processing |
T —— >
, 6 ; 3
L f
/ /
Partial User interaction initiates
page update asynchronous request

Fig. 30.10 | Ajax-enabled web application interacting with the server
asynchronously.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

a) Submitting the form before entering any information

Validating Form Data
O g

C & ® localhost:8080/ValidationAjax/ 97 R

[=] Java SE6 API Java SE7 API (] Other bookmarks

Please fill out the following form:

All fields are required and must contain valid information

Name: ‘ ‘

E-mail |
Phone: \

Fig. 30.11 | JSPthat demonstrates validation of user input. (Part | of 4.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

b) Error messages displayed after submitting the empty form

[Validating Form Data X

C M | @ localhost:8080/ValidationAjax/ I &

[=] Java SEG AP [Java SET API (O] Other bookmarks

Please fill out the following form:

All fields are required and must contain valid information

Name: | Please enter your name

E-mail: Please enter a valid e-mail address

Phone: Please enter a valid phone number
L

Fig. 30.11 | JSPthat demonstrates validation of user input. (Part 2 of 4.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

c) Error messages displayed after submitting invalid information

[validating Form Data .

C M | ® localhost:3080/ValidationAjax/ & A

E Java SE6 API P Java SE7 API ("] Other bookmarks

Please fill out the following form:

All fields are required and must contain valid information

Name: Paul plus a bunch of other Name must be fewer than 30 characters

E-mail: |not a valid email Invalid e-mail address format
Phone: |55-1234 Invalid phone number format
(Submi

Fig. 30.11 | JSP that demonstrates validation of user input. (Part 3 of 4.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

c) Error messages displayed after submitting invalid information

[validating Form Data .

C M | ® localhost:3080/ValidationAjax/ & A

E Java SE6 API P Java SE7 API ("] Other bookmarks

Please fill out the following form:

All fields are required and must contain valid information

Name: Paul plus a bunch of other Name must be fewer than 30 characters

E-mail: |not a valid email Invalid e-mail address format
Phone: |55-1234 Invalid phone number format
(Submi

Fig. 30.11 | JSP that demonstrates validation of user input. (Part 4 of 4.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

I <?xml version="1.0" encoding='UTF-8"' 7>

2

3 <!-- index.xhtml -->

4 <!-- Validating user 1input -->

5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
6 "http://waww.w3.0rg/TR/xhtml11/DTD/xhtml1l-transitional.dtd">
7 <html xmlns="http://www.w3.0rg/1999/xhtml1"

8 xmIns:h="http://java.sun.com/jsf/html"

9 xmlns:f="http://java.sun.com/jsf/core">

10 <h:head>

11 <title>Validating Form Data</title>

12 <h:outputStylesheet name="style.css" library="css"/>

13 </h:head>

14 <h:body>

15 <h:form>

16 <hl>Please fill out the following form:</hl>

17 <p>Al11 fields are required and must contain valid information</p>
18 <h:panelGrid columns="3">

19 <h:outputText value="Name:"/>
20 <h:inputText id="nameInputText" required="true"
21 requiredMessage="Please enter your name"
22 value="#{validationBean.name}"
23 validatorMessage="Name must be fewer than 30 characters"s>
24 <f:validateLength maximum="30" />

Fig. 30.12 | Ajax enabling the Validation app. (Part | of 3.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

25 </h:inputText>

26 <h:message id="nameMessage" for="nameInputText"

27 styleClass="error"/>

28 <h:outputText value="E-mail:"/>

29 <h:inputText id="emailInputText” required="true"

30 requiredMessage="Please enter a valid e-mail address"”
31 value="#{validationBean.email}"

32 validatorMessage="Invalid e-mail address format">
33 <f:validateRegex pattern=

34 \w+ L=+ " NwH) *@\w+ (L= I\wH) * N Aw+ (-] \w+) *7 />
35 </h:inputText>

36 <h:message id="emailMessage" for="emailInputText"

37 styleClass="error"/>

38 <h:outputText value="Phone:"/>

39 <h:inputText id="phonelnputText” required="true"

40 requiredMessage="Please enter a valid phone number”
41 value="#{validationBean.phone}"

42 validatorMessage="Invalid phone number format">

43 <f:validateRegex pattern=

44 TCANANA{3IN) P I A\d{3}-))7\d{3}-\d{4}" />

45 </h:inputText>

46 <h:message id="phoneMessage" for="phonelnputText"

47 styleClass="error"/>

Fig. 30.12 | Ajax enabling the Validation app. (Part 2 of 3.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

48 </h:panelGrid>

49 <h:commandButton value="Submit">

50 <f:ajax execute="nameInputText emailInputText phoneInputText"
51 render=

52 "nameMessage emailMessage phoneMessage resultOutputText"/>
53 </h:commandButton>

54 <h:outputText id="resultOutputText" escape="false"

55 value="#{validationBean.response}"/>

56 </h:form>

57 </h:body>

58 </html>

Fig. 30.12 | Ajax enabling the Validation app. (Part 3 of 3.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

