
Internet & World Wide Web
How to Program, 5/e

Note: This chapter is a copy of Chapter 31 of our book Java How to
Program, 9/e. For that reason, we simply copied the PowerPoint
slides for this chapter and did not re-numb er them

© 1992-2011 by Pearson Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 A web service is a software component stored on one
computer that can be accessed by an application (or other
software component) on another computer over a network.

 Web services communicate using such technologies as
XML, JSON and HTTP.

 In this chapter, we use two Java APIs that facilitate web
services.
◦ JAX-WS is based on the Simple Object Access Protocol (SOAP)—

an XML-based protocol that allows web services and clients to
communicate, even if the client and the web service are written in
different languages.
◦ JAX-RS uses Representational State Transfer (REST)—a network

architecture that uses the web’s traditional request/response
mechanisms such as GET and POST requests.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Business-to-Business Transactions

◦ Rather than relying on proprietary applications, businesses can

conduct transactions via standardized, widely available web

services.

◦ This has important implications for business-to-business (B2B)

transactions.

◦ Web services are platform and language independent, enabling

companies to collaborate without worrying about the

compatibility of their hardware, software and communications

technologies.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 The machine on which a web service resides is referred to
as a web service host.

 The client application sends a request over a network to the
web service host, which processes the request and returns a
response over the network to the application.

 In Java, a web service is implemented as a class.

 The class that represents the web service resides on a
server—it’s not part of the client application.

 Making a web service available to receive client requests is
known as publishing a web service; using a web service
from a client application is known as consuming a web
service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 The Simple Object Access Protocol (SOAP) is a
platform-independent protocol that uses XML to
interact with web services, typically over HTTP.

 Each request and response is packaged in a SOAP
message.
◦ Written in XML so that they are computer readable, human

readable and platform independent.

 Most firewalls allow HTTP traffic to pass through, so
that clients can browse the web by sending requests to
and receiving responses from web servers.
◦ Thus, SOAP-based services can send and receive SOAP

messages over HTTP connections with few limitations.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 The wire format used to transmit requests and responses must support
all types passed between the applications.

 When a program invokes a method of a SOAP web service, the request
and all relevant information are packaged in a SOAP message enclosed
in a SOAP envelope and sent to the server on which the web service
resides.

 When the web service receives this SOAP message, it parses the XML
representing the message, then processes the message’s contents.

 The message specifies the method that the client wishes to execute and
the arguments the client passed to that method.

 The web service calls the method with the specified arguments (if any)
and sends the response back to the client in another SOAP message.

 The client parses the response to retrieve the method’s result.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Representational State Transfer (REST) refers to an
architectural style for implementing web services.
◦ Often called RESTful web services.

 RESTful web services are implemented using web
standards.

 Each method in a RESTful web service is identified by a
unique URL.

 Thus, when the server receives a request, it immediately
knows what operation to perform.
◦ Can be used in a program or directly from a web browser.

◦ The results of a particular operation may be cached locally by the
browser when the service is invoked with a GET request.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 JavaScript Object Notation (JSON) is an alternative to

XML for representing data.

◦ Text-based data-interchange format used to represent objects in

JavaScript as collections of name/value pairs represented as

Strings.

◦ Commonly used in Ajax applications.

◦ Makes objects easy to read, create and parse

◦ Much less verbose than XML, so it allows programs to

transmit data efficiently across the Internet

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Each JSON object is represented as a list of property
names and values contained in curly braces:
 { propertyName1 : value1, propertyName2 : value2 }

 Arrays are represented with square brackets:
 [value1, value2, value3]

◦ Each value in an array can be a string, a number, a JSON
object, true, false or null.

 Representation of an array of address-book entries:
 [{ first: 'Cheryl', last: 'Black' },
 { first: 'James', last: 'Blue' },
 { first: 'Mike', last: 'Brown' },
 { first: 'Meg', last: 'Gold' }]

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 This section presents our first example of publishing

(enabling for client access) and consuming (using) a

web service.

 We begin with a SOAP-based web service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 To create a web service in NetBeans, you first create a Web
Application project.

 To create a web application, perform the following steps:
◦ 1. Select File > New Project… to open the New Project dialog.

◦ 2. Select Java Web from the dialog’s Categories list, then select
Web Application from the Projects list. Click Next >.

◦ 3. Specify the name of your project in the Project Name field and
specify where you’d like to store the project in the Project Location
field. You can click the Browse button to select the location. Click
Next >.

◦ 4. Select GlassFish Server 3 from the Server drop-down list and
Java EE 6 from the Java EE Version drop-down list.

◦ 5. Click Finish to create the project.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Perform the following steps to add a web service class to
the project:
◦ 1. In the Projects tab in NetBeans, right click the project’s node

and select New > Web Service… to open the New Web Service
dialog.
◦ 2. Specify the name of the service in the Web Service Name

field.
◦ 3. Specify the package name in the Package field.
◦ 4. Click Finish to create the web service class.

 The IDE generates a sample web service class with the
name from Step 2 in the package from Step 3.

 You can find this class in your project’s Web Services
node.

 In this class, you’ll define the methods that your web
service makes available to client applications.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Figure 31.1 contains the WelcomeSOAPService

code.

 By default, each new web service class created with the

JAX-WS APIs is a POJO (plain old Java object)

◦ You do not need to extend a class or implement an interface to

create a web service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 When you deploy a web application containing a class

that uses the @WebService annotation, the server

recognizes that the class implements a web service and

creates all the server-side artifacts that support the web

service

◦ Framework that allows the web service to wait for client

requests and respond to those requests once it is deployed on

an application server.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 The @WebService annotation indicates that a class implements
a web service.The annotation is followed by parentheses
containing optional annotation attributes.

 The name attribute specifies the name of the service endpoint
interface class that will be generated for the client.

 A service endpoint interface (SEI) class (sometimes called a
proxy class) is used to interact with the web service
◦ a client application consumes the web service by invoking methods on

the service endpoint interface object.

 The serviceName attribute specifies the service name, which
is also the name of the class that the client uses to obtain a
service endpoint interface object.
◦ If not specified, the web service’s name is assumed to be the java class

name followed by the word Service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 A method is tagged with the @WebMethod annotation to
indicate that it can be called remotely.
◦ Any methods that are not tagged with @WebMethod are not

accessible to clients that consume the web service.

 An @WebMethod annotation’s operationName
attribute to specifies the method name that is exposed to the
web service’s client.
◦ If the operationName is not specified, it is set to the actual Java

method’s name.
 A parameter is annotated with the @WebParam annotation.
 The optional @WebParam attribute name indicates the

parameter name that is exposed to the web service’s clients.
◦ If you don’t specify the name, the actual parameter name is used.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 To define the WelcomeSOAP class’s welcome method,
perform the following steps:
◦ 1. In the project’s Web Services node, double click
WelcomeSOAP to open the file WelcomeSOAPService.java
in the code editor.
◦ 2. Click the Design button at the top of the code editor to show the

web service design view (Fig. 31.2).

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

◦ 3. Click the Add Operation… button to display the Add
Operation… dialog (Fig. 31.3).
◦ 4. Specify the method name welcome in the Name field. The

default Return Type (String) is correct for this example.
◦ 5. Add the method’s name parameter by clicking the Add button

to the right of the Parameters tab then entering name in the Name
field. The parameter’s default Type (String) is correct for this
example.
◦ 6. Click OK to create the welcome method. The design view

should now appear as shown in Fig. 31.3.
◦ 7. At the top of the design view, click the Source button to display

the class’s source code and add the code line 18 of Fig. 31.1 to the
body of method welcome.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 NetBeans handles all the details of building and deploying a web
service for you.
◦ This includes creating the framework required to support the web service.

 Right click the project name WelcomeSoap in the Projects tab and
select Deploy to build and deploy the web application in the GlassFish
server.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 The GlassFish application server can dynamically create a

web page for testing a web service’s methods from a web
browser.

 Expand the project’s Web Services in the NetBeans

Projects tab.

 Right click the web service class name and select Test Web

Service.

 The GlassFish application server builds the Tester web

page and loads it into your web browser.

 Figure 31.5 shows the Tester web page for the

WelcomeSOAP web service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 If your computer is connected to a network and allows

HTTP requests, then you can test the web service from

another computer on the network by typing the

following URL (where host is the hostname or IP

address of the computer on which the web service is

deployed) into a browser on another computer:
◦ http://host:8080/WelcomeSoap/WelcomeSoapService?Tester

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 To consume a web service, a client must determine its
functionality and how to use it.

 Web services normally contain a service description.
◦ Web Service Description Language (WSDL)—an XML vocabulary that

defines the methods a web service makes available and how clients
interact with them.

◦ A WSDL document also specifies lower-level information that clients
might need, such as the required formats for requests and responses.

 WSDL documents help applications determine how to interact
with the web services described in the documents.

 GlassFish generates a web service’s WSDL dynamically for
you.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 To access the WelcomeSOAP web service, the client
code will need the following WSDL URL:
◦ http://localhost:8080/WelcomeSoap/WelcomeSoapService?Tester

 Eventually, you’ll want clients on other computers to
use your web service.

 Such clients need access to the web service’s WSDL,
which they would access with the following URL:
◦ http://host:8080/WelcomeSOAP/WelcomeSOAPService?WSDL

 where host is the hostname or IP address of the server

that hosts the web service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 You enable a Java-based client application to consume a web
service by adding a web service reference to the client
application.
◦ Defines the service endpoint interface class that allows the client to

access the web service.

 An application that consumes a web service consists of
◦ an object of a service endpoint interface (SEI) class that’s used to

interact with the web service
◦ a client application that consumes the web service by invoking methods

on the service endpoint interface object

 The service endpoint interface object handles the details of
passing method arguments to and receiving return values from
the web service on the client’s behalf.

 Figure 31.5 depicts the interactions among the client code, the
SEI object and the web service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Requests to and responses from web services created with JAX-
WS are typically transmitted via SOAP.

 Any client capable of generating and processing SOAP messages
can interact with a web service, regardless of the language in
which the web service is written.

 We now use NetBeans to create a client Java desktop GUI
application.

 When you add a web service reference, the IDE creates and
compiles the client-side artifacts
◦ framework of Java code that supports the client-side service endpoint

interface class.

 The client then calls methods on an object of the service endpoint
interface class, which uses the rest of the artifacts to interact with
the web service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Perform the following steps to create a client Java

desktop application in NetBeans:

◦ 1. Select File > New Project… to open the New Project

dialog.

◦ 2. Select Java from the Categories list and Java

Application from the Projects list, then click Next >.

◦ 3. Specify the name in the Project Name field and uncheck

the Create Main Class checkbox if you intend to create a

your own class that contains main.

◦ 4. Click Finish to create the project.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 To add a web service reference, perform the following
steps.
◦ 1. Right click the project name (WelcomeSOAPClient) in the

NetBeans Projects tab and select New > Web Service Client…
from the pop-up menu to display the New Web Service Client
dialog.
◦ 2. In the WSDL URL field, specify the URL
http://localhost:8080/WelcomeSoap/WelcomeSoapService?WSDL

(Fig. 31.8). The IDE uses this WSDL to generate the client-side artifacts.

◦ 3. For the other options, leave the default settings, then click
Finish to create the web service reference and dismiss the New Web
Service Client dialog.

 In the NetBeans Projects tab, the project now contains a
Web Service References folder with the web service’s
service endpoint interface (Fig. 31.9).

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 For this example, we use a GUI application to interact

with the WelcomeSOAP web service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Now, we access a Java web service using the REST

architecture.

 We recreate the WelcomeSOAP example to return data

in plain XML format.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 The RESTful Web Services plug-in for NetBeans provides
templates for creating RESTful web services, including ones that
can interact with databases on the client’s behalf.

 To create a RESTful web service:
◦ 1. Right-click the WelcomeRESTXML node in the Projects tab, and

select New > Other… to display the New File dialog.
◦ 2. Select Web Services under Categories, then select RESTful

Web Services from Patterns and click Next >.
◦ 3. Under Select Pattern, ensure Simple Root Resource is selected,

and click Next >.
◦ 4. For this example, set the Resource Package to
com.deitel.welcomerestxml, the Path to welcome and the
Class Name to WelcomeRESTXMLResource. Leave the MIME
Type and Representation Class set to application/xml and
java.lang.String, respectively. The correct configuration is
shown in Fig. 31.11.
◦ 5. Click Finish to create the web service.

 © Copyright 1992-2012 by Pearson

Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 NetBeans generates the class and sets up the proper
annotations.

 The class is placed in the project’s RESTful Web Services
folder.

 The code for the completed service is shown in Fig. 31.12.

 We removed some of the code generated by NetBeans that
was unnecessary for this simple web service.

 The @Path annotation on the
WelcomeRESTXMLResource class indicates the URI for
accessing the web service.
◦ This is appended to the web application project’s URL to invoke the

service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Methods of the class can also use the @Path annotation.

◦ Parts of the path specified in curly braces indicate parameters—they

are placeholders for values that are passed to the web service as part

of the path.

 Arguments in a URL can be used as arguments to a web

service method.

◦ To do so, you bind the parameters specified in the @Path

specification to parameters of the web service method with the

@PathParam annotation.

◦ When the request is received, the server passes the argument(s) in

the URL to the appropriate parameter(s) in the web service method.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 The @GET annotation denotes that this method is

accessed via an HTTP GET request.

 The @Produces annotation denotes the content type

returned to the client.

◦ It is possible to have multiple methods with the same HTTP

method and path but different @Produces annotations, and

JAX-RS will call the method matching the content type

requested by the client.

 The @Consumes annotation restricts the content type

that the web service will accept from a client.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 JAXB class from package javax.xml.bind.

◦ JAXB (Java Architecture for XML Binding) is a set of classes

for converting POJOs to and from XML.

◦ JAXB class contains easy-to-use wrappers for common

operations.

 JAXB static method marshal converts its

argument to XML format.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 GlassFish does not provide a testing facility for RESTful
services, but NetBeans automatically generates a test page
that can be accessed by right clicking the
WelcomeRESTXML node in the Projects tab and
selecting Test RESTful Web Services.

 On the test page (Fig. 31.12), expand the welcome element
in the left column and select {name}.

 The right side of the page displays a form that allows you to
choose the MIME type of the data (application/xml
by default) and lets you enter the name parameter’s value.

 Click the Test button to invoke the web service and display
the returned XML

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 The test page shows several tabs containing the results and
various other information.

 The Raw View tab shows the actual XML response.

 The Headers tab shows the HTTP headers returned by the
server.

 The Http Monitor tab shows a log of the HTTP transactions
that took place to complete the request and response.

 The test page provides its functionality by reading a WADL
file from the server.
◦ WADL (Web Application Description Language) has similar design

goals to WSDL, but describes RESTful services instead of SOAP
services.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 RESTful web services do not require web service

references.

 As in the RESTful XML web service, we use the JAXB

library.

 JAXB static method unmarshal takes as

arguments a file name or URL as a String, and a

Class<T> object indicating the Java class to which

the XML will be converted.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 XML was designed primarily as a document interchange
format.

 JSON is designed as a data exchange format.
 Data structures in most programming languages do not map

directly to XML constructs.
 JSON is a subset of the JavaScript programming language,

and its components—objects, arrays, strings, numbers—can
be easily mapped to constructs in Java and other
programming languages.

 There are many open-source JSON libraries for Java and
other languages; you can find a list of them at json.org.

 We use the Gson library from
code.google.com/p/google-gson/.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 You must download the Gson library’s JAR file, then add it to the
project as a library.

 To do so, right click your project’s Libraries folder, select Add
JAR/Folder… locate the downloaded Gson JAR file and click Open.

 Note that the argument to the @Produces attribute is
"application/json".

 JSON does not permit strings or numbers to stand on their own—they
must be encapsulated in a composite data type.
◦ So, we created class TextMessage to encapsulate the String representing

the message.

 Gson (from package com.google.gson.Gson) method toJson
converts an object into its JSON String representation.

 RESTful services returning JSON can be tested in the same way as
those returning XML.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 URL method openStream invokes the web service

and obtains an InputStream from which the client

can read the response.

 We wrap the InputStream in an

InputStreamReader so it can be passed as the first

argument to the Gson class’s fromJson method.

◦ The method we use takes as arguments a Reader from which

to read a JSON String and a Class<T> object indicating

the Java class to which the JSON String will be converted.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Section 29.8 described the advantages of using session

tracking to maintain client-state information so you can

personalize the users’ browsing experiences.
 Now we’ll incorporate session tracking into a web

service.

 Storing session information also enables a web service

to distinguish between clients.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Our next example is a web service that assists you in developing
a blackjack card game.

 The Blackjack web service (Fig. 31.17) provides web
methods to shuffle a deck of cards, deal a card from the deck and
evaluate a hand of cards.

 The web service (Fig. 31.17) stores each card as a String
consisting of a number, 1–13, representing the card’s face (ace
through king, respectively), followed by a space and a digit, 0–3,
representing the card’s suit (hearts, diamonds, clubs or spades,
respectively).

 For example, the jack of clubs is represented as "11 2" and the
two of hearts as "2 0".

 To create and deploy this web service, follow the steps that we
presented in Sections 31.6.2–31.6.3 for the WelcomeSOAP
service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 To enable session tracking in a web service in JAX-WS 2.2,
precede your web service class with the
@HttpSessionScope- annotation.

◦ Annotation is located in package

com.sun.xml.ws.developer.servlet.

 Add the JAX-WS 2.2 library to your project.
◦ Right click the Libraries node in your Blackjack web application

project and select Add Library…

◦ In the dialog that appears, locate and select JAX-WS 2.2, then click
Add Library.

◦ Once a web service is annotated with @HttpSessionScope, the
server automatically maintains a separate instance of the class for
each client session. The deck instance variable (line 16) will be
maintained separately for each client.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 The blackjack application in Fig. 31.18 keeps track of

the player’s and dealer’s cards, and the web service
tracks the cards that have been dealt.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 When interacting with a JAX-WS web service that
performs session tracking, the client application must
indicate whether it wants to allow the web service to maintain
session information.

 We first cast the service endpoint interface object to interface
type BindingProvider.

 A BindingProvider enables the client to manipulate the
request information that will be sent to the server.

 This information is stored in an object that implements
interface RequestContext.

 The BindingProvider and RequestContext are part
of the framework that is created by the IDE when you add a
web service client to the application.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Next, we invoke the BindingProvider’s
getRequestContext method to obtain the

RequestContext object.

 Then we call the RequestContext’s put method to

set the property
BindingProvider.SESSION_MAINTAIN_PROPERTY to true.

 This enables the client side of the session-tracking

mechanism, so that the web service knows which client

is invoking the service’s web methods.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 In this section, we present an airline reservation web

service that receives information regarding the type of

seat a customer wishes to reserve and makes a

reservation if such a seat is available.

 Later in the section, we present a web application that

allows a customer to specify a reservation request, then

uses the airline reservation web service to attempt to

execute the request.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Our web service uses a reservation database

containing a single table named Seats to locate a seat

matching a client’s request.
 The sample data is shown in Fig. 31.19.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 This section presents a ReservationClient

JSFweb application that consumes the Reservation

web service.

 The application allows users to select"Aisle",

"Middle" or "Window“ seats in "Economy" or

"First“ class, then submit their requests to the

airline reservation web service.

 If the database request is not successful, the application

instructs the user to modify the request and try again.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Most of the web services we’ve demonstrated received and returned
primitive-type instances.

 It’s also possible to process instances of class types in a web service.
 This section presents a RESTful EquationGenerator web service

that generates random arithmetic equations of type Equation.

 The client is a math-tutoring application that accepts information about
the mathematical question that the user wishes to attempt (addition,
subtraction or multiplication) and the skill level of the user (1 specifies
equations using numbers from 1 through 9, 2 specifies equations
involving numbers from 10 through 99, and 3 specifies equations
containing numbers from 100 through 999).

 The web service then generates an equation consisting of random
numbers in the proper range.

 The client application receives the Equation and displays the sample
question to the user.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 We define class Equation in Fig. 31.23.

 The only requirement for serialization and

deserialization to work with the JAXB and Gson

classes is that class Equation must have the same

public properties on both the server and the client.

 Such properties can be public instance variables or

private instance variables that have corresponding set

and get methods.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Figure 31.24 presents the EquationGeneratorXML
web service’s class for creating randomly generated
Equations.

 Method getXml (lines 19–38) takes two parameters—a
String representing the mathematical operation ("add",
"subtract" or "multiply") and an int representing
the difficulty level.

 JAX-RS automatically converts the arguments to the correct
type and will return a “not found” error to the client if the
argument cannot be converted from a String to the
destination type.

 Supported types for conversion include integer types,
floating-point types, boolean and the corresponding type-
wrapper classes.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 The EquationGeneratorXMLClient application

(Fig. 31.24) retrieves an Equation object formatted

as XML from the EquationGeneratorXML web

service.

 The client application then displays the left-hand side

of the Equation and waits for user to evaluate the

expression and enter the result.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 The event handler for generateJButton constructs

the URL to invoke the web service, then passes this

URL to the unmarshal method, along with an

instance of Class<Equation>, so that JAXB can

convert the XML into an Equation object.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 As you saw in Section 31.8, RESTful web services can
return data formatted as JSON as well.

 Figure 31.26 is a reimplementation of the
EquationGeneratorXML service that returns an
Equation in JSON format.

 The logic implemented here is the same as the XML
version except that we use Gson to convert the
Equation object into JSON instead of using JAXB to
convert it into XML.

 Note that the @Produces annotation has also changed
to reflect the JSON data format.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 The program in Fig. 31.27 consumes the

EquationGeneratorJSON service and performs

the same function as

EquationGeneratorXMLClient—the only

difference is in how the Equation object is retrieved

from the web service.

 We use the URL class and an InputStreamReader

to invoke the web service and read the response.

 The retrieved JSON is deserialized using Gson and

converted back into an Equation object.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

