Chapter 28: Web Services in

Java

Internet & World Wide Web
How to Program, 5/e

Note. This chapter is a copy of Chapter 31 of our book Java How to
Program, 9/e. For that reason, we simply copied the PowerPoint
slides for this chapter and did not re-numb er them

© 1992-2011 by Pearson Education, Inc. All Rights Reserved.

OBJECTIVES

In this chapter you will learn:

m What a web service is.
m How to publish and consume web services in NetBeans.

m How XML, JSON, XML-Based Simple Object Access Protocol (SOAP) and Representational State
Transfer (REST) Architecture enable Java web services.

m How to create client desktop and web applications that consume web services.

How to use session tracking in web services to maintain client state information.

m How to connect to databases from web services.

How to pass objects of user-defined types to and return them from a web service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.
31.
31.

I Introduction
2 Web Service Basics
3 Simple Object Access Protocol (SOAP)

31.4 Representational State Transfer (REST)

31.
31.

31

5 JavaScript Object Notation (JSON)

6 Publishing and Consuming SOAP-Based Web Services

31.6.1 Creating a Web Application Project and Adding a Web Service Class in NetBeans

31.6.2 Defining the WelcomeSOAP Web Service in NetBeans

31.6.3 Publishing the We1comeSOAP Web Service from NetBeans

31.6.4 Testing the WelcomeSOAP Web Service with GlassFish Application Server's Tester Web Page
31.6.5 Describing a Web Service with the Web Service Description Language (WSDL)

31.6.6 Creating a Client to Consume the WelcomeSOAP Web Service

31.6.7 Consuming the WelcomeSOAP Web Service

.7 Publishing and Consuming REST-Based XML Web Services

31.7.1 Creating a REST-Based XML Web Service
31.7.2 Consuming a REST-Based XML Web Service

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.8 Publishing and Consuming REST-Based JSON Web Services

31.8.1 Creating a REST-Based JSON Web Service
31.8.2 Consuming a REST-Based JSON Web Service

31.9 Session Tracking in a SOAP Web Service

31.9.1 Creating a Blackjack Web Service
31.9.2 Consuming the Blackjack Web Service

31.10Consuming a Database-Driven SOAP Web Service

31.10.1 Creating the Reservation Database
31.10.2 Creating a Web Application to Interact with the Reservation Service

31.11 Equation Generator: Returning User-Defined Types

31.11.1 Creating the Equation-GeneratorXML Web Service
31.11.2 Consuming the Equation-GeneratorXML Web Service
31.11.3 Creating the Equation-Generator]SON Web Service
31.11.4 Consuming the Equation-GeneratorJSON Web Service

31.12Wrap-Up

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.1 Introduction

» A web service is a software component stored on one
computer that can be accessed by an application (or other
software component) on another computer over a network.

» Web services communicate using such technologies as
XML, JSON and HTTP.

» In this chapter, we use two Java APIs that facilitate web
services.

> JAX-WS i1s based on the Simple Object Access Protocol (SOAP)—
an XML-based protocol that allows web services and clients to
communicate, even if the client and the web service are written in
different languages.

o JAX-RS uses Representational State Transfer (REST)—a network
architecture that uses the web’s traditional request/response
mechanisms such as GET and POST requests.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.1 Introduction (cont.)

» Business-to-Business Transactions

o Rather than relying on proprietary applications, businesses can
conduct transactions via standardized, widely available web
services.

> This has important implications for business-to-business (B2B)
transactions.

> Web services are platform and language independent, enabling
companies to collaborate without worrying about the
compatibility of their hardware, software and communications
technologies.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.2 Web Service Basics

» The machine on which a web service resides 1s referred to
as a web service host.

» The client application sends a request over a network to the
web service host, which processes the request and returns a
response over the network to the application.

» In Java, a web service 1s implemented as a class.

» The class that represents the web service resides on a
server—it’s not part of the client application.

» Making a web service available to receive client requests 1s
known as publishing a web service; using a web service
from a client application 1s known as consuming a web
service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.3 Simple Object Access Protocol
(SOAP)

» The Simple Object Access Protocol (SOAP) 1s a
platform-independent protocol that uses XML to
interact with web services, typically over HTTP.

» Each request and response 1s packaged in a SOAP
message.

> Written in XML so that they are computer readable, human
readable and platform independent.

» Most firewalls allow HTTP traffic to pass through, so
that clients can browse the web by sending requests to
and recelving responses from web servers.

> Thus, SOAP-based services can send and receive SOAP
messages over HT'TP connections with few limitations.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.3 Simple Object Access Protocol
(SOAP) (cont.)

>

>

The wire format used to transmit requests and responses must support
all types passed between the applications.

When a program invokes a method of a SOAP web service, the request
and all relevant information are packaged in a SOAP message enclosed
in a SOAP envelope and sent to the server on which the web service
resides.

When the web service receives this SOAP message, it parses the XML
representing the message, then processes the message’s contents.

The message specifies the method that the client wishes to execute and
the arguments the client passed to that method.

The web service calls the method with the specified arguments (if any)
and sends the response back to the client in another SOAP message.

The client parses the response to retrieve the method’s result.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.4 Representational State Transfer
(REST)

» Representational State Transfer (REST) refers to an
architectural style for implementing web services.
> Often called RESTful web services.

» RESTful web services are implemented using web
standards.

» Each method 1n a RESTful web service 1s 1dentified by a
unique URL.

» Thus, when the server receives a request, it immediately
knows what operation to perform.
> Can be used 1n a program or directly from a web browser.

> The results of a particular operation may be cached locally by the
browser when the service 1s invoked with a GET request.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.5 JavaScript Object Notation (JSON)

» JavaScript Object Notation (JSON) 1s an alternative to
XML for representing data.

> Text-based data-interchange format used to represent objects in
JavaScript as collections of name/value pairs represented as
Strings.

o Commonly used in Ajax applications.

> Makes objects easy to read, create and parse

> Much less verbose than XML, so it allows programs to
transmit data efficiently across the Internet

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.5 JavaScript Object Notation (JSON)
(cont.)

» Each JSON object 1s represented as a list of property
names and values contained in curly braces:
« { propertyNamel : valuel, propertyName2 : value2 }

» Arrays are represented with square brackets:
- [valuel , value2, value3]

> Each value 1n an array can be a string, a number, a JSON
object, true, falseornull.

» Representation of an array of address-book entries:

« [{ first: 'Cheryl’', last: 'Black' 1},
{ first: 'James', last: 'Blue' },
{ first: 'Mike', last: 'Brown' 1},
{ first: 'Meg', last: 'Gold" }]

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.6 Publishing and Consuming SOAP-
Based Web Services

» This section presents our first example of publishing
(enabling for client access) and consuming (using) a
web service.

» We begin with a SOAP-based web service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.6.1 Creating a Web Application Projec®
and Adding a Web Service Class in

NetBeans

» To create a web service in NetBeans, you first create a \Web
Application project.

» To create a web application, perform the following steps:
o L - Select File > New Project... to open the New Project dialog.

o 2. Select Java Web from the dialog’s Categories list, then select
Web Application from the Projects list. Click Next >.

o 3. Specify the name of your project in the Project Name field and
specify where you’d like to store the project in the Project Location
field. You can click the Browse button to select the location. Click
Next >.

o 4. Select GlassFish Server 3 from the Server drop-down list and
Java EE 6 from the Java EE Version drop-down list.

o 5. Click Finish to create the project.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.6.1 Creating a Web Application Projec®
and Adding a Web Service Class in

NetBeans f((;:oni;)
» Perform the following steps to add a web service class to

the project:

o 1 - In the Projects tab in NetBeans, right click the project’s node
3@(11 select New > Web Service... to open the New Web Service

ialog.

o fE -ldSpecify the name of the service in the Web Service Name

ield.

o 3. Specify the package name in the Package field.
o 4. Click Finish to create the web service class.

» The IDE generates a sample web service class with the
name from Step 2 in the package from Stzep 3.

» You can find this class in your project’s Web Services
node.

» In this class, you’ll define the methods that your web
service makes available to client applications.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.6.2 Defining the welcomeSOAP Web
Service in NetBeans

» Figure 31.1 contains the Wwe lcomeSOAPService
code.

» By default, each new web service class created with the
JAX-WS APIs 1s a POJO (plain old Java object)

> You do not need to extend a class or implement an interface to
create a web service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 31.1: WelcomeSOAP.java

2 // Web service that returns a welcome message via SOAP.

3 package com.deitel.welcomesoap;

4

5 import javax.jws.WebService; // program uses the annotation @webService
6 import javax.jws.WebMethod; // program uses the annotation @webMethod
7 1import javax.jws.WebParam; // program uses the annotation @WebParam

8

9 @WebService() // annotates the class as a web service
I0 public class WelcomeSOAP
11 {
12 // WebMethod that returns welcome message
13 @wWebMethod(operationName = "welcome")
14 public String welcome(@WebParam(name = "name”) String name)
15 {
16 return "Welcome to JAX-WS web services with SOAP, " + name + "!";
17 } // end method welcome

I8 } // end class WelcomeSOAP

Fig. 31.1 | Web service that returns a welcome message via SOAP.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.6.2 Defining the welcomeSOAP Web
Service in NetBeans (cont.)

» When you deploy a web application containing a class
that uses the @webServ1i ce annotation, the server
recognizes that the class implements a web service and

creates all the server-side artifacts that support the web
service

o Framework that allows the web service to wait for client

requests and respond to those requests once it is deployed on
an application server.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.6.2 Defining the We l comeSOAP Web

Service in NetBeans (cont.)

4

The @WebService annotation indicates that a class implements
a web service.The annotation is followed by parentheses
containing optional annotation attributes.

The name attribute specifies the name of the service endpoint
interface class that will be generated for the client.

A service endpoint interface (SEI) class (sometimes called a

proxy class) 1s used to interact with the web service

> a client application consumes the web service by invoking methods on
the service endpoint interface object.

The serviceName attribute specifies the service name, which

1s also the name of the class that the client uses to obtain a

service endpoint interface obj ect.

> If not specified, the web service’s name is assumed to be the java class
name followed by the word Service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.6.2 Defining the We l comeSOAP Web
Service in NetBeans (cont.)

» A method 1s tagged with the @WebMethod annotation to
indicate that it can be called remotely.

> Any methods that are not tagged with @webMethod are not
accessible to clients that consume the web service.

» An @webMethod annotation’s operationName
attribute to specifies the method name that 1s exposed to the
web service’s client.

o If the operationName is not specified, it is set to the actual Java
method’s name.

» A parameter 1s annotated with the @WebParam annotation.
» The optional @wWebParam attribute name indicates the

parameter name that 1s exposed to the web service’s clients.
o If you don’t specify the name, the actual parameter name 1s used.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 31.1

Failing to expose a method as a web method by declaring
it with the @WebMethod annotation prevents clients of
the web service from accessing the method. There’s one
exception—if none of the class’s methods are declared
with the @WebMethod annotation, then all the pub1ic
methods of the class will be exposed as web methods.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 31.2

Methods with the @WebMethod annotation cannot be
static. An object of the web service class must exist for
a client to access the service’s web methods.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.6.2 Defining the welcomeSOAP Web
Service in NetBeans (cont.)

» To define the We 1l comeSOAP class’s we 1 come method,

perform the following steps:

° 1. _Inthe project’s Web Services node, double click .
We 1 comeSOAP to open the file Wwe lcomeSOAPService. java

in the code editor.
o 2. Click the Design button at the top of the code editor to show the

web service design view (Fig. 31.2).

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

(9] welcomeSOAP.java = m@@
Desion || [(9 0 [100% | & & |60

WelcomeSOAPService

Operations | Add Operation‘.!ﬂ [|

Quality Of Service
[Optimize Transfer Of Binary Data (MTOM)

7 Reliable Message Delivery

[7 Secure Service

| Advanced ... |

Fig. 31.2 | Web service design view.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.6.2 Defining the welcomeSOAP Web
Service in NetBeans (cont.)

o 3. Click the Add Operation... button to display the Add
Operation... dialog (Fig. 31.3).

> 4. Specify the method name we 1 come in the Name field. The
default Return Type (String) is correct for this example.

° 5. Add the method’s name parameter by clicking the Add button
to the right of the Parameters tab then entering name in the Name
field. The parameter’s default Type (String) is correct for this
example.

> b- Click OK to create the we 1 come method. The design view
should now appear as shown in Fig. 31.3.

o 7. Atthe top of the design view, click the Source button to display
the class’s source code and add the code line 18 of Fig. 31.1 to the
body of method we | come.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

(J Add Operation... =

Name: ‘welcnme

Return Type: ljava.lang.smng | Browse...

Parameters | Exceptions
MName Type Final Add

java.lang.5String Remove

ok || cancel

Fig. 31.3 | Adding an operation to a web service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

s w
Source Desgnlgﬂa’@‘m(}% A Qa‘@

WelcomeSOAPService
Operations | Add Operation... | | |
(<) welcome L_| Ii:l E_:J
Parameters Output Faults Description
Parameter Name Parameter Type
name java.lang.String
Quality Of Service

" Optimize Transfer Of Binary Data (MTOM)
" Reliable Message Delivery
[0 Secure Service

| Advanced ... |

Fig. 31.4 | Web service design view after new operation is added.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

<

31.6.3 Publishing the welcomeSOAP Web
Service from NetBeans

» NetBeans handles all the details of building and deploying a web
service for you.

o This includes creating the framework required to support the web service.

» Right click the project name We 1 comeSoap in the Projects tab and

select Deploy to build and deploy the web application in the GlassFish
server.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.6.4 Testing the WwelcomeSOAP Web <
Service with GlassFish Application

Server’s Tester Web Page
4

The GlassFish application server can dynamically create a
web page for testing a web service’s methods from a web
browser.

Expand the project’s Web Services in the NetBeans
Projects tab.

Right click the web service class name and select Test Web
Service.

The GlassFish application server builds the Tester web
page and loads it into your web browser.

Figure 31.5 shows the Tester web page for the
We 1 comeSOAP web service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

[WelcomeSOAPService W...

C M | ® localhost:8080/WelcomeSOAP/WelcomeSOAPService?Tester kI §
[=) Jjava SE6 AP1 [Java SE7 API (] Other bookmarks

-

WelcomeSOAPService Web Service Tester I

This form will allow you to test your web service implementation (WSDL File)

m

To invoke an operation, fill the method parameter(s) input boxes and click on the button labeled with the method name.

Methods :

public abstract java lang. String com deitel welcomesoap. WelcomeSOAP welcome(java lang String)

welcome | (\)

Fig. 31.5 | Tester web page created by GlassFish for the We1comeSOAP web
service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

[Methed invocation trace

= C AN © localhost:8080/WelcomeSOAP/WelcomeSOAPService?Tester 5| W
[=] Java SE6 AP1 [Java SE7 API (3 Other bookmarks

-

welcome Method invocation

m

Method parameter(s)

| Type A alne|

jiava lang String|Paul |

Method returned

java lang String : "Welcome to JAX-WS web services with SOAP, Paul!"

e] »

Fig. 31.6 | Testing WwelcomeSOAP’s welcome method.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.6.4 Testing the WwelcomeSOAP Web <
Service with GlassFish Application
Server’s Tester Web Page (cont.)

» If your computer 1s connected to a network and allows
HTTP requests, then you can test the web service from
another computer on the network by typing the
following URL (where host 1s the hostname or IP

address of the computer on which the web service 1s

deployed) into a browser on another computer:
> http://host:8080/wWelcomeSoap/wWelcomeSoapService?Tester

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.6.5 Describing a Web Service with the®

Web Service Description Language
(WSDL)
» To consume a web service, a client must determine its
functionality and how to use it.

» Web services normally contain a service description.

> Web Service Description Language (WSDL)—an XML vocabulary that
defines the methods a web service makes available and how clients
interact with them.

> A WSDL document also specifies lower-level information that clients
might need, such as the required formats for requests and responses.
» WSDL documents help applications determine how to interact
with the web services described in the documents.

» GlassFish generates a web service’s WSDL dynamically for
youl.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.6.5 Describing a Web Service with the Web
Service Description Language (WSDL) (cont.)

» To access the We 1 comeSOAP web service, the client
code will need the following WSDL URL:

> http://localhost:8080/welcomeSoap/wWelcomeSoapService?Tester

» Eventually, you’ll want clients on other computers to
use your web service.

» Such clients need access to the web service’s WSDL,
which they would access with the following URL:

o http://host:8080/wWelcomeSOAP/WelcomeSOAPService?wWSDL

where host 1s the hostname or IP address of the server
that hosts the web service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.6.6 Creating a Client to Consume the
We lcomeSOAP Web Service

» You enable a Java-based client application to consume a web
service by adding a web service reference to the client
application.
> Defines the service endpoint interface class that allows the client to

access the web service.

» An application that consumes a web service consists of

o an object of a service endpoint interface (SEI) class that’s used to
interact with the web service

> a client application that consumes the web service by invoking methods
on the service endpoint interface object
» The service endpoint interface object handles the details of
passing method arguments to and receiving return values from
the web service on the client’s behalf.

» Figure 31.5 depicts the interactions among the client code, the
SEI object and the web service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Client Server

Client > SE| » » Web

code object Internet

< < service

Fig. 31.7 | Interaction between a web service client and a web service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.6.6 Creating a Client to Consume the
wWelcomeSOAP Web Service (cont.)

» Requests to and responses from web services created with JAX-
WS are typically transmitted via SOAP.

» Any client capable of generating and processing SOAP messages
can interact with a web service, regardless of the language in
which the web service 1s written.

» We now use NetBeans to create a client Java desktop GUI
application.

» When you add a web service reference, the IDE creates and
compiles the client-side artifacts
o framework of Java code that supports the client-side service endpoint
interface class.
» The client then calls methods on an object of the service endpoint
interface class, which uses the rest of the artifacts to interact with
the web service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.6.6 Creating a Client to Consume the
wWelcomeSOAP Web Service (cont.)

» Perform the following steps to create a client Java
desktop application in NetBeans:
> 1. Select File > New Project... to open the New Project
dialog.
> 2. Select Java from the Categories list and Java
Application from the Projects list, then click Next >.

> 3. Specify the name in the Project Name field and uncheck
the Create Main Class checkbox if you intend to create a
your own class that contains main.

o 4. Click Finish to create the project.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.6.6 Creating a Client to Consume the
wWelcomeSOAP Web Service (cont.)

» To add a web service reference, perform the following
steps.

> 1. Right click the project name (We lcomeSOAPCI11ent) in the
NetBeans Projects tab and select New > Web Service Client...

from the pop-up menu to display the New Web Service Client
dialog.

o 2. Inthe WSDL URL field, specify the URL
http://localhost:8080/welcomeSoap/wWelcomeSoapService?wSDL
(Fig. 31.8). The IDE uses this WSDL to generate the client-side artifacts.

o 3. For the other options, leave the default settings, then click

FiniS_h to create the web service reference and dismiss the New Web
Service Client dialog.

» In the NetBeans Projects tab, the project now contains a
Web Service References folder with the web service’s
service endpoint interface (Fig. 31.9).

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

e

J New Web Service Client

Steps

WSDL and Client Location

1. Choose File Type
2. WSDL and Client Location

Specify the WSDL file of the Web Service,
(") Project: . Browse...

) Local File: [| Browse...

@ WSDL URL: 3080/WelcomeSOAP /WelcomeSOAPService?WSDL| Set Proxy...

Spedify a package name where the dlient java artifacts will be generated:

Project: WelcomeSOAPClient

Package: -
Client Style: :JAX-WS Style =
|| Generate Dispatch code

Next > | [Finish ‘[:g[Cancel || Hep

Fig. 31.8 |

New Web Service Client dialog.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

: Proj.. < % |: Files : Services
=8 W \VelcomeSOAPClient
=8 5 Source Packages

w-EE META-INF

- META-INF.wsdl.localhost_8080.1
= com.deitel.welcomesoapdiient

B |5 TestPackages |

g8 Generated Sources (jz g

- com.deitel. welcomesoap
@]&Objecﬁacmry.java

- & ®welcome. java

@]aWelcomeResponse.java

..... [®welcomeSOAP.java

- @‘?‘WelcomeSOAPService Java

M

Generated artifacts

m

£+l fa Web Service References
El WelcomeSOAPService Web service endpoint
= @ welcomeSOAPService
Bi WelcomeSOAPPort

‘o @ welcome

frul

- & Libraries
#-| @ TestLibraries
< | m |)

1

Fig. 31.9 | NetBeans Project tab after adding a web service reference to the
project.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

<
31.6.8 Consuming the WelcomeSOAP WeE
Service

» For this example, we use a GUI application to interact
with the We 1 comeSOAP web service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

// Fig. 31.10: WelcomeSOAPClientJFrame.java

// Client desktop application for the WelcomeSOAP web service.
package com.deitel.welcomesoapclient;

import com.deitel.welcomesoap.WelcomeSOAP;
import com.deitel.welcomesoap.WelcomeSOAPService;
import javax.swing.JOptionPane;

O~ N WN=—

Fig. 31.10 | Client desktop application for the We1comeSOAP web service. (Part | of
5.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

9
10
11
12
13
14
15
16
17
I8
19
20
21
22
23
24
25
26
27
28
29
30
31

public class WelcomeSOAPClient]JFrame extends javax.swing.JFrame

{

// references the service endpoint interface object (i.e., the proxy)
private WelcomeSOAP welcomeSOAPProxy;

// no-argument constructor
public WelcomeSOAPClient]Frame()
{

initComponents();

try

{
// create the objects for accessing the WelcomeSOAP web service
WeTlcomeSOAPService service = new WelcomeSOAPService();
welcomeSOAPProxy = service.getWelcomeSOAPPort();

} // end try
catch (Exception exception)
{

exception.printStackTrace();
System.exit(1);
} // end catch
} // end WelcomeSOAPClient]JFrame constructor

Fig. 31.10 | Client desktop application for the We1comeSOAP web service. (Part 2 of
5)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

32 // The initComponents method i1s autogenerated by NetBeans and is called

33 // from the constructor to initialize the GUI. This method is not shown
34 // here to save space. Open WelcomeSOAPClientJFrame.java in this

35 // example's folder to view the complete generated code.

36

37 // call the web service with the supplied name and display the message
38 private void submitJButtonActionPerformed(

39 java.awt.event.ActionEvent evt)

40 {

41 String name = namelTextField.getText(); // get name from JTextField
42

43 // retrieve the welcome string from the web service

44 String message = welcomeSOAPProxy.welcome(name);

45 JOptionPane.showMessageDialog(this, message,

46 "Welcome™, JOptionPane.INFORMATION_MESSAGE);

47 } // end method submitJButtonActionPerformed

48

Fig. 31.10 | Client desktop application for the WelcomeSOAP web service. (Part 3 of
5.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

49 // main method begins execution

50 public static void main(String args[])

51 {

52 java.awt.EventQueue.invokelLater(

53 new Runnable()

54 {

55 public void run()

56 {

57 new WelcomeSOAPClient]JFrame() .setVisible(true);
58 } // end method run

59 } // end anonymous 1inner class

60); // end call to java.awt.EventQueue.invokelater
61 } // end main

62

63 // Variables declaration - do not modify

64 private javax.swing.JLabel nameJlLabel;

65 private javax.swing.JTextField namelTextField;

66 private javax.swing.JButton submitJButton;

67 // End of variables declaration

68 1} // end class WelcomeSOAPClient]Frame

Fig. 31.10 | Client desktop application for the WelcomeSOAP web service. (Part 4 of
5.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Enter your name:
-Submit ‘Welcome

6 Welcome to JAX-WS web senvices with SOAP, Paul!

Fig. 31.10 | Client desktop application for the We1comeSOAP web service. (Part 5 of
5.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.7 Publishing and Consuming REST-
Based XML Web Services

» Now, we access a Java web service using the REST
architecture.

» We recreate the We 1 comeSOAP example to return data
in plain XML format.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.7.1 Creating a REST-Based XML Web
Service

» The RESTful Web Services plug-in for NetBeans provides
templates for creating RESTful web services, including ones that
can interact with databases on the client’s behalf.

» To create a RESTful web service:

> 1 - Right-click the WelcomeRESTXML node in the Projects tab, and
select New > Other... to display the New File dialog.

o 2. Select Web Services under Categories, then select RESTful
Web Services from Patterns and click Next >.

> 3. Under Select Pattern, ensure Simple Root Resource is selected,
and click Next >.

o 4. For this example, set the Resource Package to
com.deitel.welcomerestxml, the Path to we l come and the
Class Name to Wwe1comeRESTXMLResource. Leave the MIME
Type and Representation Class set to app1ication/xml and
java. lang.String, respectively. The correct configuration is
shown in Fig. 31.11.

5. Click Finish to create the web service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Representation Class:

() New RESTful Web Services from Patterns (]
Steps Specify Resource Classes
é g;‘:z:i;ﬂ;::pe Project: :WelmmeRESTXML |
3. Specify Resource Classes Location: Source Packages -
Resource Package: \com. deitel welcomerestxml -
Path: | welcome
Class Name: |WelcomeRESTXMLResaurce
MIME Type: appiication xml v

java.lang.String

o) [o] [

Fig. 31.11 | Creating the WelcomeRESTXML RESTful web service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.7.1 Creating a REST-Based XML Web

Service (cont.)

>

NetBeans generates the class and sets up the proper
annotations.

The class is placed in the project’s RESTful Web Services
folder.

The code for the completed service 1s shown 1n Fig. 31.12.

We removed some of the code generated by NetBeans that
was unnecessary for this simple web service.

The @Path annotation on the
welcomeRESTXMLResource class indicates the URI for

accessing the web service.

o This is appended to the web application project’s URL to invoke the
service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

import
import
import
import
import
10 1import

OoO~NONNDE WN =

12 @Path(

// Fig. 31.12: WelcomeRESTXMLResource.java
// REST web service that returns a welcome message as XML.
package com.deitel.welcomerestxml;

java.io.StringWriter;

javax
javax
javax
javax

Ws.rs.GET; // annotation to indicate method uses HTTP GET
.ws.rs.Path; // annotation to specify path of resource
.ws.rs.PathParam; // annotation to get parameters from URI
.ws.rs.Produces; // annotation to specify type of data
javax.

xml.bind.JAXB; // utility class for common JAXB operations

"welcome”™) // URI used to access the resource

Fig. 31.12 | REST web service that returns a welcome message as XML. (Part | of
2.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

I3 public class WelcomeRESTXMLResource

14 {

I5 // retrieve welcome message

16 @GET // handles HTTP GET requests

17 @Path("{name}") // URI component containing parameter

18 @Produces("application/xml") // response formatted as XML
19 public String getXml(@PathParam("name") String name)

20 {

21 String message = "Welcome to JAX-RS web services with REST and " +
22 "XML, " + name + "!"; // our welcome message

23 StringWriter writer = new StringWriter();

24 JAXB.marshal(message, writer); // marshal String as XML
25 return writer.toString(); // return XML as String

26 } // end method getXml

27 } // end class WelcomeRESTXMLResource

Fig. 31.12 | REST web service that returns a welcome message as XML. (Part 2 of
2.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.7.1 Creating a REST-Based XML Web
Service (cont.)

» Methods of the class can also use the @Path annotation.

o Parts of the path specified in curly braces indicate parameters—they
are placeholders for values that are passed to the web service as part
of the path.

» Arguments 1n a URL can be used as arguments to a web

service method.

> To do so, you bind the parameters specified in the @Path

specification to parameters of the web service method with the
@PathParam annotation.

> When the request is received, the server passes the argument(s) in
the URL to the appropriate parameter(s) in the web service method.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.7.1 Creating a REST-Based XML Web
Service (cont.)

» The @GET annotation denotes that this method 1s
accessed via an HTTP GET request.
» The @Produces annotation denotes the content type

returned to the client.

o It 1s possible to have multiple methods with the same HTTP
method and path but different @Produces annotations, and
JAX-RS will call the method matching the content type
requested by the client.

» The @Consumes annotation restricts the content type
that the web service will accept from a client.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.7.1 Creating a REST-Based XML Web
Service (cont.)

» JAXB class from package Javax.xml.bind.

o JAXB (Java Architecture for XML Binding) is a set of classes
for converting POJOs to and from XML.

> JAXB class contains easy-to-use wrappers for common
operations.

» JAXB static method marshal converts its
argument to XML format.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.7.1 Creating a REST-Based XML Web
Service (cont.)

» GlassFish does not provide a testing facility for RESTful
services, but NetBeans automatically generates a test page
that can be accessed by right clicking the

WelcomeRESTXML node in the Projects tab and
selecting Test RESTful Web Services.

» On the test page (Fig. 31.12), expand the welcome element
in the left column and select {name}.

» The right side of the page displays a form that allows you to
choose the MIME type of the data (application/xm]l
by default) and lets you enter the name parameter’s value.

» Click the Test button to invoke the web service and display
the returned XML

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 31.1
At the time of this writing, the test page did not work in
Google’s Chrome web browser. If this is your default web
browser, copy the test page’s URL from Chrome's address
freld and paste it into another web browser’s address
freld. Fig. 31.13 shows the test page in Mozilla Firefox.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

@) Test RESTful Web Services - Morilla Firefox][)
File Edit View History Bookmarks Tools Help

2 A A | || file:///C:/bool jhtp3/examples/c| elcomel L.j’ v
|| file:///C:/books/2011/jhtpS/ les/ch31/Wel REST 5.

| || Test RESTful Web Services [+ |

|';" ~ Google P|

LU LB hitpo//localhost: 8080/ WelcomeRES TXMLUresources/application.wadl

Test RESTful Web Services

Er_':u WelcomeRESTXML WelcomeRESTXML > welcome > {name}

H ~u
EE welcome Resource: welcomei{name}
1 @ {name} (welcome/{name})

m

Choose method to test: | GET : MIME: | application.xml E[Add Parameter

name: | Paul

Status: 200 (OK)

Response:
Tabular View l Raw View ‘ Sub-Resource Headers Http Monitor
l«?xml version="1.0" encoding="UTF-8"7>
<string=Welcome to JAX-RS web services with REST and XML, Paul</string= o
< | [| »
& vSlow

Javascriptits.showViews('raw')

.31.13 | Test page for the welcomeRESTXML web service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.7.1 Creating a REST-Based XML Web
Service (cont.)

>

The test page shows several tabs containing the results and
various other information.

The Raw View tab shows the actual XML response.

The Headers tab shows the HTTP headers returned by the
Server.

The Http Monitor tab shows a log of the HTTP transactions
that took place to complete the request and response.

The test page provides its functionality by reading a WADL
file from the server.

> WADL (Web Application Description Language) has similar design
goals to WSDL, but describes RESTHful services instead of SOAP
services.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.7.2 Consuming a REST-Based XML
Web Service

» RESTTtul web services do not require web service
references.

» As 1n the RESTful XML web service, we use the JAXB
library.

» JAXB static method unmarshal takes as
arguments a file name or URL as a String, and a

Class<T> object indicating the Java class to which
the XML will be converted.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 31.14: WelcomeRESTXMLClient]JFrame. java

2 // Client that consumes the WelcomeRESTXML service.

3 package com.deitel.welcomerestxmlclient;

4

5 import javax.swing.JOptionPane;

6 import javax.xml.bind.JAXB; // utility class for common JAXB operations

7

8 public class WelcomeRESTXMLClientJFrame extends javax.swing.JFrame

9 {

10 // no-argument constructor

11 public WelcomeRESTXMLClient]Frame()

12 {

13 initComponents();

14 } // end constructor

15

16 // The 1initComponents method is autogenerated by NetBeans and is called
17 // from the constructor to initialize the GUI. This method is not shown
18 // here to save space. Open WelcomeRESTXMLClient]Frame.java in this

19 // example's folder to view the complete generated code.
20

Fig. 31.14 | Client that consumes the WelcomeRESTXML service. (Part | of 4.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

// call the web service with the supplied name and display the message
private void submitJButtonActionPerformed(

{

java.awt.event.ActionEvent evt)
String name = nameJTextField.getText(); // get name from JTextField

// the URL for the REST service
String url =
"http://localhost:8080/WelcomeRESTXML/resources/welcome/" + name;

// read from URL and convert from XML to Java String
String message = JAXB.unmarshal(url, String.class);

// display the message to the user
JOptionPane.showMessageDialog(this, message,
"Welcome"™, JOptionPane.INFORMATION_MESSAGE);

} // end method submit]ButtonActionPerformed

Fig. 31.14 | Client that consumes the WelcomeRESTXML service. (Part 2 of 4.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

39 // main method begins execution

40 public static void main(String args[])

41 {

42 java.awt.EventQueue.invokelLater(

43 new Runnable()

44 {

45 public void run()

46 {

47 new WelcomeRESTXMLClientJFrame().setVisible(true);
48 } // end method run

49 } // end anonymous 1inner class

50); // end call to java.awt.EventQueue.invokelater
51 } // end main

52

53 // Variables declaration - do not modify

54 private javax.swing.JLabel nameJlLabel;

55 private javax.swing.JTextField namelTextField;

56 private javax.swing.JButton submitJButton;

57 // End of variables declaration

58 1} // end class WelcomeRESTXMLClient]Frame

Fig. 31.14 | Client that consumes the WelcomeRESTXML service. (Part 3 of 4.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

: [E vl Welcome |
Enter your name:
Welcome to JAX-RS web senices with REST and XML, Paul!

Fig. 31.14 | Client that consumes the WelcomeRESTXML service. (Part 4 of 4.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.8 Publishing and Consuming REST-
Based JSON Web Services

» XML was designed primarily as a document interchange
format.

» JSON is designed as a data exchange format.

» Data structures in most programming languages do not map
directly to XML constructs.

» JSON 1s a subset of the JavaScript programming language,
and 1ts components—objects, arrays, strings, numbers—can
be easily mapped to constructs 1in Java and other
programming languages.

» There are many open-source JSON libraries for Java and
other languages; you can find a list of them at Json.org.

» We use the Gson library from

code.google.com/p/google-gson/.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

8.1 Creating a REST-Based JSON Wek

Service

>

>

You must download the Gson library’s JAR file, then add it to the
project as a library.

To do so, right click your project’s Libraries folder, select Add
JAR/Folder... locate the downloaded Gson JAR file and click Open.

Note that the argument to the @Produces attribute is
"application/json".
JSON does not permit strings or numbers to stand on their own—they

must be encapsulated in a composite data type.

> So, we created class TextMessage to encapsulate the String representing
the message.

Gson (from package com. google.gson.Gson) method toJson
converts an object into its JSON Str1ng representation.

RESTTul services returning JSON can be tested in the same way as
those returning XML.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

// Fig. 31.15: WelcomeRESTISONResource.java
// REST web service that returns a welcome message as JSON.
package com.deitel.welcomerestjson;

import com.google.gson.Gson; // converts POJO to JSON and back again
import javax.ws.rs.GET; // annotation to indicate method uses HTTP GET
import javax.ws.rs.Path; // annotation to specify path of resource
import javax.ws.rs.PathParam; // annotation to get parameters from URI
import javax.ws.rs.Produces; // annotation to specify type of data

OoO~NONNDE WN =

I1 @Path("welcome") // path used to access the resource
12 public class WelcomeRESTISONResource

13 {

14 // retrieve welcome message

15 @GET // handles HTTP GET requests

16 @Path("{name}") // takes name as a path parameter

17 @Produces("application/json™) // response formatted as JSON

18 public String getlson(@PathParam("name”) String name)

19 {

20 // add welcome message to field of TextMessage object

21 TextMessage message = new TextMessage(); // create wrapper object
22 message.setMessage(String.format("%s, %s!",

23 "Welcome to JAX-RS web services with REST and JSON", name));

Fig. 31.15 | REST web service that returns a welcome message as JSON. (Part | of
2.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

return new Gson().tolson(message); // return JSON-wrapped message
} // end method getJson
} // end class WelcomeRESTISONResource

// private class that contains the message we wish to send
class TextMessage

{

private String message; // message we're sending

// returns the message
pubTlic String getMessage()
{

return message;
} // end method getMessage

// sets the message
public void setMessage(String value)
{
message = value;
} // end method setMessage
} // end class TextMessage

Fig. 31.15 | REST web service that returns a welcome message as JSON. (Part 2 of
2)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.8.2 Consuming a REST-Based JSON
Web Service

» URL method openStream invokes the web service
and obtains an ITnputStream from which the client
can read the response.

» We wrap the TnputStreamin an
InputStreamReader so it can be passed as the first
argument to the Gson class’s f romJson method.

> The method we use takes as arguments a Reader from which
to read a JSON String and a Class<T> object indicating
the Java class to which the JSON St ring will be converted.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 31.16: WelcomeRESTISONClient]Frame.java

2 // Client that consumes the WelcomeRESTISON service.

3 package com.deitel.welcomerestjsonclient;

4

5 1import com.google.gson.Gson; // converts POJO to JSON and back again
6 import java.io.InputStreamReader;

7 import java.net.URL;

8 import javax.swing.JOptionPane;

9
10 public class WelcomeRESTISONClient]Frame extends javax.swing.JFrame
I {
12 // no-argument constructor
13 public WelcomeRESTISONClientJFrame()
14 {
15 initComponents();
16 } // end constructor
17

Fig. 31.16 | Client that consumes the WelcomeRESTISON service. (Part | of 5.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

18
19
20
21
22
23
24
25
26
27
28

// The initComponents method i1s autogenerated by NetBeans and is called
// from the constructor to initialize the GUI. This method is not shown
// here to save space. Open WelcomeRESTISONClient]JFrame.java in this

// example's folder to view the complete generated code.

// call the web service with the supplied name and display the message
private void submitJButtonActionPerformed(
java.awt.event.ActionEvent evt)

{
String name = namelTextField.getText(); // get name from JTextField

Fig. 31.16 | Client that consumes the WelcomeRESTISON service. (Part 2 of 5.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

29 // retrieve the welcome string from the web service

30 try

31 {

32 // the URL of the web service

33 String url = "http://localhost:8080/WelcomeRESTISON/" +
34 "resources/welcome/" + name;

35

36 // open URL, using a Reader to convert bytes to chars
37 InputStreamReader reader =

38 new InputStreamReader(new URL(C url).openStream());
39

40 // parse the JSON back into a TextMessage

41 TextMessage message =

42 new Gson().fromJson(reader, TextMessage.class);

43

44 // display message to the user

45 JOptionPane.showMessageDialog(this, message.getMessage(),
46 "Welcome"™, JOptionPane.INFORMATION_MESSAGE);

47 } // end try

48 catch (Exception exception)

49 {

50 exception.printStackTrace(); // show exception details
51 } // end catch

52 } // end method submitJButtonActionPerformed

Fig. 31.16 | Client that consumes the We1comeRESTJISON service. (Part 3 of 5.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

53

54 // main method begin execution

55 public static void main(String args[])

56 {

57 java.awt.EventQueue.invokelLater(

58 new Runnable()

59 {

60 pubTlic void run()

61 {

62 new WelcomeRESTISONClient]JFrame().setVisible(true);
63 } // end method run

64 } // end anonymous 1inner class

65); // end call to java.awt.EventQueue.invokelLater
66 } // end main

67

68 // Variables declaration - do not modify

69 private javax.swing.JLabel name]Label;

70 private javax.swing.JTextField namelTextField;
71 private javax.swing.JButton submitJButton;

72 // End of variables declaration

73 1} // end class WelcomeRESTISONClient]Frame

74

Fig. 31.16 | Client that consumes the WelcomeRESTISON service. (Part 4 of 5.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

75 // private class that contains the message we are receiving
76 class TextMessage

77 {

78 private String message; // message we're receiving
79

80 // returns the message

81 public String getMessage()

82 {

83 return message;

84 } // end method getMessage

85

86 // sets the message

87 public void setMessage(String value)
88 {

89 message = value;

90 } // end method setMessage

91 } // end class TextMessage

Fig. 31.16 | Client that consumes the WelcomeRESTISON service. (Part 5 of 5.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.9 Session Tracking in a SOAP-Base
Web Service

» Section 29.8 described the advantages of using session
tracking to maintain client-state information so you can
personalize the users’ browsing experiences.

» Now we’ll incorporate session tracking into a web
service.

» Storing session information also enables a web service
to distinguish between clients.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31

1.9.1 Creating a Blackjack Web

Service

>

>

Our next example 1s a web service that assists you in developing
a blackjack card game.

The Blackjack web service (Fig. 31.17) provides web
methods to shuffle a deck of cards, deal a card from the deck and
evaluate a hand of cards.

The web service (Fig. 31.17) stores each card as a String
consisting of a number, 1-13, representing the card’s face (ace
through king, respectively), followed by a space and a digit, 03,
representing the card’s suit (hearts, diamonds, clubs or spades,
respectively).

For example, the jack of clubs is represented as "11 2" and the
two of heartsas "2 0".

To create and deploy this web service, follow the steps that we
presented in Sections 31.6.2-31.6.3 for the wWe 1l comeSOAP
service.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

// Fig. 31.17: Blackjack.java
// Blackjack web service that deals cards and evaluates hands
package com.deitel.blackjack;

import com.sun.xml.ws.developer.servlet.HttpSessionScope;
import java.util.ArraylList;

import java.util.Random;

import javax.jws.WebMethod;

import javax.jws.WebParam;

10 1import javax.jws.WebService;

OoO~NONNDE WN =

12 @HttpSessionScope // enable web service to maintain session state
I3 @WebService()
14 public class Blackjack

15 {

16 private ArraylList< String > deck; // deck of cards for one user session
17 private static final Random randomObject = new Random();

18

Fig. 31.17 | Blackjack web service that deals cards and evaluates hands. (Part |
of 6.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

19 // deal one card

20 @WebMethod(operationName = "dealCard"”)

21 public String dealCard()

22 {

23 String card = "";

24 card = deck.get(0); // get top card of deck
25 deck.remove(0); // remove top card of deck
26 return card;

27 } // end WebMethod dealCard

28

29 // shuffle the deck

30 @wWebMethod(operationName = "shuffle"”)

31 pubTic void shuffle()

32 {

33 // create new deck when shuffle is called

34 deck = new ArraylList< String >(Q);

35

Fig. 31.17 | Blackjack web service that deals cards and evaluates hands. (Part 2
of 6.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

36 // populate deck of cards

37 for (int face = 1; face <= 13; face++) // loop through faces
38 for (int suit = 0; suit <= 3; suit++) // loop through suits
39 deck.add(face + " " + suit); // add each card to deck
40

41 String tempCard; // holds card temporarily during swapping

42 int index; // index of randomly selected card

43

44 for (int i = 0; i < deck.size() ; i++) // shuffle

45 {

46 index = randomObject.nextInt(deck.size() - 1);

47

48 // swap card at position i with randomly selected card

49 tempCard = deck.get(i);

50 deck.set(i, deck.get(index));

51 deck.set(index, tempCard);

52 } // end for

53 } // end WebMethod shuffle

54

Fig. 31.17 | Blackjack web service that deals cards and evaluates hands. (Part 3
of 6.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

55 // determine a hand's value

56 @WebMethod(operationName = "getHandValue")

57 public int getHandValue(@WebParam(name = "hand”) String hand)
58 {

59 // split hand into cards

60 String[] cards = hand.split("\t");

61 int total = 0; // total value of cards in hand

62 int face; // face of current card

63 int aceCount = 0; // number of aces 1in hand

64

65 for (int i = 0; i < cards.length; i++)

66 {

67 // parse string and get first int in String

68 face = Integer.parselnt(

69 cards[i].substring(0, cards[i J.indexOf(C ™ ")));
70

Fig. 31.17 | Blackjack web service that deals cards and evaluates hands. (Part 4
of 6.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

71 switch (face)

72 {

73 case 1: // if ace, increment aceCount
74 ++aceCount;

75 break;

76 case 11: // jack

77 case 12: // queen

78 case 13: // king

79 total += 10;

80 break;

81 default: // otherwise, add face
82 total += face;

83 break;

84 } // end switch

85 } // end for

86

Fig. 31.17 | Blackjack web service that deals cards and evaluates hands. (Part 5
of 6.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

87 // calculate optimal use of aces

88 if (aceCount > 0)

89 {

920 // if possible, count one ace as 11

91 if (total + 11 + aceCount - 1 <= 21)
92 total += 11 + aceCount - 1;

93 else // otherwise, count all aces as 1
94 total += aceCount;

95 } // end if

96

97 return total;

98 } // end WebMethod getHandValue

99 1} // end class Blackjack

Fig. 31.17 | Blackjack web service that deals cards and evaluates hands. (Part 6
of 6.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.9.1 Creating a Blackjack Web
Service (cont.)

» To enable session tracking in a web service in JAX-WS 2.2,
precede your web service class with the
@HttpSessionScope- annotation.
> Annotation 1s located in package

com.sun.xml.ws.developer.servlet.

» Add the JAX-WS 2.2 library to your project.

> Right click the Libraries node in your Blackjack web application
project and select Add Library...

o In the dialog that appears, locate and select JAX-WS 2.2, then click
Add Library.

> Once a web service is annotated with @HttpSessionScope, the
server automatically maintains a separate instance of the class for

each client session. The deck instance variable (line 16) will be
maintained separately for each client.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.9.2 Consuming the Blackjack Web
Service

» The blackjack application in Fig. 31.18 keeps track of
the player’s and dealer’s cards, and the web service
tracks the cards that have been dealt.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

// Fig. 31.18: BlackjackGameJFrame.java
// Blackjack game that uses the Blackjack Web Service.
package com.deitel.blackjackclient;

import com.deitel.blackjack.Blackjack;

import com.deitel.blackjack.BlackjackService;
import java.awt.Color;

import java.util.ArraylList;

import javax.swing.ImagelIcon;

10 1import javax.swing.JLabel;

Il 1import javax.swing.JOptionPane;

12 import javax.xml.ws.BindingProvider;

OoO~NONNDE WN =

13

14 public class BlackjackGameJFrame extends javax.swing.JFrame

15 {

16 private String playerCards;

17 private String dealerCards;

18 private ArraylList<JLabel> cardboxes; // list of card image JLabels
19 private int currentPlayerCard; // player's current card number

20 private int currentDealerCard; // blackjackProxy's current card number
21 private BlackjackService blackjackService; // used to obtain proxy
22 private Blackjack blackjackProxy; // used to access the web service
23

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part | of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

24 // enumeration of game states

25 private enum GameStatus

26 {

27 PUSH, // game ends in a tie

28 LOSE, // player loses

29 WIN, // player wins

30 BLACKJACK // player has blackjack

31 } // end enum GameStatus

32

33 // no-argument constructor

34 pubTic BlackjackGamelFrame()

35 {

36 initComponents();

37

38 // due to a bug in NetBeans, we must change the JFrame's background
39 // color here rather than in the designer

40 getContentPane() .setBackground(new Color(0, 180, 0));
41

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part 2 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

42 // initialize the blackjack proxy

43 try

44 {

45 // create the objects for accessing the Blackjack web service
46 blackjackService = new BlackjackService();

47 blackjackProxy = blackjackService.getBlackjackPort();

48

49 // enable session tracking

50 ((BindingProvider) blackjackProxy).getRequestContext().put(
51 BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

52 } // end try

53 catch (Exception e)

54 {

55 e.printStackTrace();

56 } // end catch

57

58 // add JLabels to cardBoxes ArraylList for programmatic manipulation
59 cardboxes = new ArraylList<JLabel>();

60

61 cardboxes.add(dealerCardl]Label);

62 cardboxes.add(dealerCard2]Label);

63 cardboxes.add(dealerCard3JLabel);

64 cardboxes.add(dealerCard4JLabel);

65 cardboxes.add(dealerCard5JLabel);

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part 3 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

66 cardboxes.add(dealerCard6]Label);

67 cardboxes.add(dealerCard7JLabel);
68 cardboxes.add(dealerCard8JLabel);
69 cardboxes.add(dealerCard9]Label);
70 cardboxes.add(dealerCardlO0JLabel);
71 cardboxes.add(dealerCardll]Label);
72 cardboxes.add(playerCardl]Label);
73 cardboxes.add(playerCard2]Label);
74 cardboxes.add(playerCard3JLabel);
75 cardboxes.add(playerCard4]JLabel);
76 cardboxes.add(playerCard5JLabel);
77 cardboxes.add(playerCard6]Label);
78 cardboxes.add(playerCard7JLabel);
79 cardboxes.add(playerCard8JLabel);
80 cardboxes.add(playerCard9JLabel);
81 cardboxes.add(playerCardlO]Label);
82 cardboxes.add(playerCardll]Label);
83 } // end constructor

84

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part 4 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

85 // play the dealer’s hand

86 private void dealerPlay()

87 {

88 try

89 {

920 // while the value of the dealers's hand 1is below 17

91 // the dealer must continue to take cards

92 String[] cards = dealerCards.split("\t");

93

94 // display dealer's cards

95 for (int i = 0; i < cards.length; i++)

926 {

97 displayCard(1, cards[i]);

98 }

99

100 while (blackjackProxy.getHandValue(dealerCards) < 17)
101 {

102 String newCard = blackjackProxy.dealCard(); // deal new card
103 dealerCards += "\t" + newCard; // deal new card

104 displayCard(currentDealerCard, newCard);

105 ++currentDealerCard;

106 JOptionPane.showMessageDialog(this, "Dealer takes a card",
107 "Dealer's turn", JOptionPane.PLAIN_MESSAGE);

108 } // end while

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part 5 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

109
110 int dealersTotal = blackjackProxy.getHandValue(dealerCards);

i int playersTotal blackjackProxy.getHandValue(playerCards);
112

113 // if dealer busted, player wins

114 if (dealersTotal > 21)

115 {

116 gameOver(GameStatus.WIN);

117 return;

118 } // end if

119

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part 6 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

// if dealer and player are below 21
// higher score wins, equal scores is a push
if (dealersTotal > playersTotal)

{
gameOver(GameStatus.LOSE);
}
else if (dealersTotal < playersTotal)
{
gameOver(GameStatus.WIN);
}
else
{
gameOver (GameStatus.PUSH);
}
} // end try
catch (Exception e)

{
e.printStackTrace();

} // end catch
} // end method dealerPlay

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part 7 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

141 // displays the card represented by cardValue in specified JLabel

142 private void displayCard(int card, String cardValue)

143 {

144 try

145 {

146 // retrieve correct JLabel from cardBoxes

147 JLabel displayLabel = cardboxes.get(card);

148

149 // if string representing card is empty, display back of card
150 if (cardvalue.equals(""))

151 {

152 displaylLabel.setIcon(new ImageIcon(getClass().getResource(
153 "/com/deitel/java/blackjackclient/"™ +

154 "blackjack_images/cardback.png"”)));

155 return;

156 } // end if

157

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part 8 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

158 // retrieve the face value of the card

159 String face = cardValue.substring(0, cardvValue.indexOf(" "));
160

161 // retrieve the suit of the card

162 String suit =

163 cardValue.substring(cardvalue.indexOf(C ™ ") + 1);
164

165 char suitLetter; // suit letter used to form image file
166

167 switch (Integer.parseInt(suit))

168 {

169 case 0: // hearts

170 suitLetter = 'h';

171 break;

172 case 1: // diamonds

173 suitLetter = 'd’;

174 break;

175 case 2: // clubs

176 suitLetter = 'c’;

177 break;

178 default: // spades

179 suitlLetter = 's';

180 break;

181 } // end switch

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part 9 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

182

183 // set image for displaylLabel

184 displayLabel.setIcon(new ImageIcon(getClass().getResource(
185 "/com/deitel/java/blackjackclient/blackjack_images/" +
186 face + suitLetter + ".png")));

187 } // end try

188 catch (Exception e)

189 {

190 e.printStackTrace();

191 } // end catch

192 } // end method displayCard

193

194 // displays all player cards and shows appropriate message
195 private void gameOver(GameStatus winner)

196 {

197 String[] cards = dealerCards.split("\t");

198

199 // display blackjackProxy's cards

200 for (int i = 0; i < cards.length; i++)

201 {

202 displayCard(i, cards[i]);

203 }

204

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part 10 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

205 // display appropriate status image

206 if (winner == GameStatus.WIN)

207 {

208 status]JLabel.setText("You win!"™);

209 }

210 else if (winner == GameStatus.LOSE)

211 {

212 statusJLabel.setText("You lose.”);

213 }

214 else if (winner == GameStatus.PUSH)

215 {

216 statusJLabel.setText("It's a push."”);

217 }

218 else // blackjack

219 {

220 statusJLabel.setText("Blackjack!"™);

221 }

222

223 // display final scores

224 int dealersTotal = blackjackProxy.getHandValue(dealerCards);
225 int playersTotal = blackjackProxy.getHandValue(playerCards);
226 dealerTotallLabel.setText("Dealer: " + dealersTotal);
227 playerTotallLabel.setText("Player: " + playersTotal);
228

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part I | of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

// reset for new game
standJButton.setEnabled(false);
hitJButton.setEnabled(false);
dealJButton.setEnabled(true);

} // end method gameOver

// The 1initComponents method is autogenerated by NetBeans and 1is called
// from the constructor to initialize the GUI. This method is not shown
// here to save space. Open BlackjackGamelFrame.java in this

// example's folder to view the complete generated code

// handles dealJButton click
private void dealJButtonActionPerformed(
java.awt.event.ActionEvent evt)

{

String card; // stores a card temporarily until it's added to a hand

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part 12 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

246 // clear card images

247 for (int i = 0; i < cardboxes.size(); i++)

248 {

249 cardboxes.get(i).setIcon(null);

250 }

251

252 status]Label.setText("");

253 dealerTotallLabel.setText("");

254 playerTotallLabel.setText("");

255

256 // create a new, shuffled deck on remote machine

257 blackjackProxy.shuffle();

258

259 // deal two cards to player

260 playerCards = blackjackProxy.dealCard(); // add first card to hand
261 displayCard(11, playerCards); // display first card
262 card = blackjackProxy.dealCard(); // deal second card
263 displayCard(12, card); // display second card

264 playerCards += "\t" + card; // add second card to hand
265

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part 13 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

266 // deal two cards to blackjackProxy, but only show first

267 dealerCards = blackjackProxy.dealCard(); // add first card to hand
268 displayCard(0, dealerCards); // display first card

269 card = blackjackProxy.dealCard(); // deal second card

270 displayCard(1, ""); // display back of card

271 dealerCards += "“\t" + card; // add second card to hand

272

273 stand]JButton.setEnabled(true);

274 hitJButton.setEnabled(true);

275 dealJButton.setEnabled(false);

276

277 // determine the value of the two hands

278 int dealersTotal = blackjackProxy.getHandValue(dealerCards);
279 int playersTotal = blackjackProxy.getHandValue(playerCards);
280

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part 14 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

281 // if hands both equal 21, it is a push

282 if (playersTotal == dealersTotal &% playersTotal == 21)
283 {

284 gameOver(GameStatus.PUSH);

285 }

286 else if (dealersTotal == 21) // blackjackProxy has blackjack
287 {

288 gameOver(CameStatus.LOSE);

289 }

290 else if (playersTotal == 21) // blackjack

291 {

292 gameOver(GameStatus.BLACKIJACK);

293 }

294

295 // next card for blackjackProxy has index 2

296 currentDealerCard = 2;

297

298 // next card for player has index 13

299 currentPlayerCard = 13;

300 } // end method dealJButtonActionPerformed

301

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part 15 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

302 // handles standJButton click

303 private void hitJButtonActionPerformed(

304 java.awt.event.ActionEvent evt)

305 {

306 // get player another card

307 String card = blackjackProxy.dealCard(); // deal new card
308 playerCards += "“\t" + card; // add card to hand

309

310 // update GUI to display new card

311 displayCard(currentPlayerCard, card);

312 ++currentPlayerCard;

313

314 // determine new value of player's hand

315 int total = blackjackProxy.getHandValue(playerCards);
316

317 if (total > 21) // player busts

318 {

319 gameOver(GameStatus.LOSE);

320 }

321 else if (total == 21) // player cannot take any more cards
322 {

323 hitJButton.setEnabled(false);

324 dealerPlay();

325 } // end if

326 } // end method hitJButtonActionPerformed

1.18 | Blackjack game that uses the Blackjack web service. (Part 16 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

327

328 // handles standJButton click

329 private void stand]JButtonActionPerformed(
330 java.awt.event.ActionEvent evt)

331 {

332 stand]JButton.setEnabled(false);

333 hitJButton.setEnabled(false);

334 deal]Button.setEnabled(true);

335 dealerPlay();

336 } // end method stand]ButtonActionPerformed
337

338 // begins application execution

339 public static void main(String args[])
340 {

341 java.awt.EventQueue.invokelLater(

342 new Runnable()

343 {

344 public void run()

345 {

346 new BlackjackGameJFrame().setVisible(true);
347 }

348 h

349); // end call to java.awt.EventQueue.invokelLater

350 } // end main

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part 7 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

// Variables declaration - do not modify
JButton deal]Button;

private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private

javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.

javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.

swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.

JLabel
JLabel
JLabel
JLabel
JLabel
JLabel
JLabel
JLabel
JLabel
JLabel
JLabel
JLabel
JLabel

dealerCardl0JLabel;
dealerCardll]Label;
dealerCardl]Label;
dealerCard2]Label;
dealerCard3JLabel;
dealerCard4]Label;
dealerCard5JLabel;
dealerCard6]Label;
dealerCard7JLabel;
dealerCard8JLabel;
dealerCard9]Label;
dealerJLabel;
dealerTotallLabel;

JButton hitJButton;

JLabel
JLabel
JLabel
JLabel
JLabel
JLabel
JLabel

playerCardl0]Label;
playerCardll]Label;
playerCardl]Label;
playerCard2JLabel;
playerCard3]Label;
playerCard4]Label;
playerCard5]Label;

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part I8 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

375
376
377
378
379
380
381
382
383

private
private
private
private
private
private
private
private

javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.

swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.

// End of variables
384 } // end class BlackjackGamelFrame

JLabel
JLabel
JLabel
JLabel
JLabel
JLabel

playerCard6JLabel;
playerCard7]Label;
playerCard8]Label;
playerCard9]Label;
playerJLabel;

playerTotalJLabel;

JButton standJButton;

JLabel

statusJLabel;

declaration

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part 19 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

a) Dealer and player hands after the user clicks the Deal JButton

Dealer's hand:

DALy
e

| [

«).
PG

Player's hand:

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part 20 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

b) Dealer and player

hands after the user
clicks Stand. In this Dealer's hand:

case, the result is a push H .

Player's hand: It's a push.
Dealer: 17

Player: 17

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part 21 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

¢) Dealer and player hands after the user clicks Hit and draws 21. In this case, the player wins

= T ——

P &)

Dealer's hand:

Player's hand:

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part 22 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

d) Dealer and player hands after the player is dealt blackjack

Dealer s hand:

Player's hand:

. 31.18 | Blackjack game that uses the Blackjack web service. (Part 23 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

e) Dealer and player hands after the dealer is dealt blackjack

Dealer's hand:

Player's hand:

Fig. 31.18 | Blackjack game that uses the Blackjack web service. (Part 24 of 24.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.9.2 Consuming the Blackjack Web

Service (cont.)

>

When interacting with a JAX-WS web service that
performs session tracking, the client application must
indicate whether 1t wants to allow the web service to maintain
session information.

We first cast the service endpoint interface object to interface
type BindingProvider.

A BindingProvider enables the client to manipulate the
request information that will be sent to the server.

This information is stored in an object that implements
interface RequestContext.

The BindingProvider and RequestContext are part
of the framework that 1s created by the IDE when you add a
web service client to the application.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.9.2 Consuming the Blackjack Web
Service (cont.)

» Next, we invoke the BindingProvider’s
getRequestContext method to obtain the
RequestContext object.

» Then we call the RequestContext’s put method to

set the property
BindingProvider.SESSION_MAINTAIN_PROPERTY to true.

» This enables the client side of the session-tracking
mechanism, so that the web service knows which client
1s invoking the service’s web methods.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.10 Consuming a Database-Driven
SOAP-Based Web Service

» In this section, we present an airline reservation web
service that receives information regarding the type of
seat a customer wishes to reserve and makes a
reservation if such a seat 1s available.

» Later in the section, we present a web application that
allows a customer to specify a reservation request, then
uses the airline reservation web service to attempt to
execute the request.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.10.1 Creating the Reservation
Database

» Our web service uses a reservation database
containing a single table named Seats to locate a seat
matching a client’s request.

» The sample data 1s shown 1n Fig. 31.19.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

1 Aisle Economy 0
2 Aisle Economy 0
3 Aisle First 0
4 Middle Economy 0
5 Middle Economy 0
6 Middle First 0
7 Window Economy 0
8 Window Economy 0
9 Window First 0
10 Window First 0

Fig. 31.19 | Data from the seats table.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

7 Software Engineering Observation 31.1

._._.A‘_'_ Usmg PreparedStatements to create SQL statements
is highly recommended to secure against so-called SQL
injection attacks in which executable code is inserted into
SQL code. The site www. owasp.org/index.php/
Preventing_SQL_Injection_in_Java provides a
summary of SQL injection attacks and ways to mitigate
against them.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

// Fig. 31.20: Reservation.java
// Airline reservation web service.
package com.deitel.reservation;

import java.sql.Connection;

import java.sql.PreparedStatement;
import java.sql.ResultSet;

import java.sql.SQLException;
import javax.annotation.Resource;
10 1import javax.jws.WebMethod;

Il import javax.jws.WebParam;

12 import javax.jws.WebService;

I3 1import javax.sql.DataSource;

OoO~NONNDE WN =

Fig. 31.20 | Airline reservation web service. (Part | of 5.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

I5 @webService()
I6 public class Reservation

17 {

18 // allow the server to inject the DataSource

19 @Resource(name="jdbc/reservation”)

20 DataSource dataSource;

21

22 // a WebMethod that can reserve a seat

23 @WebMethod(operationName = "reserve")

24 public boolean reserve(@WebParam(name = "seatType"”) String seatType,
25 @webParam(name = "classType") String classType)
26 {

27 Connection connection = null;

28 PreparedStatement lookupSeat = null;

29 PreparedStatement reserveSeat = null;

30

Fig. 31.20 | Airline reservation web service. (Part 2 of 5.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31 try

32 {

33 connection = DriverManager.getConnection(

34 DATABASE_URL, USERNAME, PASSWORD);

35 TookupSeat = connection.prepareStatement(

36 "SELECT \"number\" FROM \"seats\" WHERE (\"taken\" = 0) " +
37 "AND (\"Tocation\" = ?) AND (\"class\" = ?2)");
38 lTookupSeat.setString(1, seatType);

39 TookupSeat.setString(2, classType);

40 ResultSet resultSet = lookupSeat.executeQuery();
41

42 // if requested seat is available, reserve it

43 if (resultSet.next())

44 {

45 int seat = resultSet.getInt(1);

46 reserveSeat = connection.prepareStatement(

47 "UPDATE \'"seats\" SET \"taken\'"=1 WHERE \"number\"=?");
48 reserveSeat.setInt(1, seat);

49 reserveSeat.executeUpdate();

50 return true;

51 } // end if

52

53 return false;

54 } // end try

Fig. 31.20 | Airline reservation web service. (Part 3 of 5.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

55 catch (SQLException e)

56 {

57 e.printStackTrace();
58 return false;

59 } // end catch

60 catch (Exception e)

61 {

62 e.printStackTrace();
63 return false;

64 } // end catch

65 finally

66 {

67 try

68 {

69 TookupSeat.close();
70 reserveSeat.close();
71 connection.close();
72 } // end try

73 catch (Exception e)
74 {

75 e.printStackTrace();
76 return false;

77 } // end catch

78 } // end finally

Fig. 31.20 | Airline reservation web service. (Part 4 of 5.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

79 } // end WebMethod reserve
80 1} // end class Reservation

Fig. 31.20 | Airline reservation web service. (Part 5 of 5.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.10.2 Creating a Web Application to
Interact with the Reservation Service

» This section presents a ReservationClient
JSFweb application that consumes the Reservation
web service.

» The application allows users to select ' A1sle",
"Middle" or "Window" seats in 'Economy" or
"F1rst” class, then submit their requests to the
airline reservation web service.

» If the database request is not successful, the application
instructs the user to modify the request and try again.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

I <?xml version="1.0" encoding='UTF-8"' 7>

2

3 <!-- Fig. 31.21: index.xhtml -->

4 <!-- Facelets page that allows a user to select a seat -->

5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

6 "http://waww.w3.0rg/TR/xhtml11/DTD/xhtml1l-transitional.dtd">

7 <html xmlns="http://www.w3.0rg/1999/xhtml1"

8 xmIns:h="http://java.sun.com/jsf/html"

9 xmlIns:f="http://java.sun.com/jsf/core">

10 <h:head>

11 <title>Airline Reservations</title>

12 </h:head>

13 <h:body>

14 <h:form>

15 <h3>Please select the seat type and class to reserve:</h3>
16 <h:selectOneMenu value="#{reservationBean.seatType}">

17 <f:selectItem itemValue="Aisle" itemLabel="Aisle" />
18 <f:selectItem itemValue="Middle"” itemLabel="Middle" />
19 <f:selectItem itemValue="Window" itemLabel="Window" />
20 </h:selectOneMenu>
21 <h:selectOneMenu value="#{reservationBean.classType}">
22 <f:selectItem itemValue="Economy" 1itemLabel="Economy"™ />
23 <f:selectItem itemValue="First" itemLabel="First" />
24 </h:selectOneMenu>

Fig. 31.21 | Facelets page that allows a user to select a seat. (Part | of 4.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

25 <h:commandButton value="Reserve"”

26 action="#{reservationBean.reserveSeat}"/>
27 </h:form>

28 <h3>#{reservationBean.result}</h3>

29 </h:body>

30 </html>

Fig. 31.21 | Facelets page that allows a user to select a seat. (Part 2 of 4.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

a) Selecting
a seat

b) Seat reserved
successfully

[Airline Reservations X

2> C A @ localhost:8080/ReservationClient/ I §
(&) Java SE6 API [Java SE7 API {7 Other bookmarks

| »

Please select the seat type and class to reserve:

m

|Economy[+]

‘ 1

[Airline Reservations

& C A @ localhost:8080/ReservationClient/faces/index.xh S | W

(&) Java SE6 API [Java SE7 API [Other bookmarks

| »

Please select the seat type and class to reserve:

Window EI | Economy E]

m

Your reservation has been made. Thank you!

1

Fig. 31.21 | Facelets page that allows a user to select a seat. (Part 3 of 4.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

c) Attempting to
reserve another [Airline Reservations .

window seat in & C M | @ localhost:8080/ReservationClient/faces/index.xh 53 | W

economy when [&) Java SE6 API [Java SE7 API {3 Other bookmarks
there are no such

seats available | please select the seat type and class to reserve:

Window [+] | Economy [+] Reserv%
d) No seats
match the [Airline Reservations x

requested seat &~ C A © localhost:8080/ReservationClient/faces/indexxh Sy | W\
type and class [&) Java SE6 API [Java SE7 API (33 Other bookmarks

-

-~

Please select the seat type and class to reserve:

Window B | Economy E

This type of seat is not available. Please modify your
request and try again.

m

Fig. 31.21 | Facelets page that allows a user to select a seat. (Part 4 of 4.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 31.22: ReservationBean.java

2 // Bean for seat reservation client.

3 package reservationclient;

4

5 import com.deitel.reservation.Reservation;

6 1import com.deitel.reservation.ReservationService;

7 import javax.faces.bean.ManagedBean;

8

9 (@ManagedBean(name = "reservationBean”)
I0 public class ReservationBean
I {
12 // references the service endpoint interface object (i.e., the proxy)
13 private Reservation reservationServiceProxy; // reference to proxy
14 private String seatType; // type of seat to reserve
15 private String classType; // class of seat to reserve
16 private String result; // result of reservation attempt
17

Fig. 31.22 | Page bean for seat reservation client. (Part | of 4.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// no-argument constructor
public ReservationBean()
{
// get service endpoint interface
ReservationService reservationService = new ReservationService();
reservationServiceProxy = reservationService.getReservationPort();
} // end constructor

// return classType
public String getClassType()
{
return classType;
} // end method getClassType

// set classType
public void setClassType(String classType)
{
this.classType = classType;
} // end method setClassType

Fig. 31.22 | Page bean for seat reservation client. (Part 2 of 4.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

38 // return seatType

39 public String getSeatType()
40 {

41 return seatType;

42 } // end method getSeatType
43

44 // set seatType

45 public void setSeatType(String seatType)
46 {

47 this.seatType = seatType;
48 } // end method setSeatType
49

50 // return result

51 public String getResult()

52 {

53 return result;

54 } // end method getResult
55

Fig. 31.22 | Page bean for seat reservation client. (Part 3 of 4.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

56 // invoke the web service when the user clicks Reserve button

57 public void reserveSeat()

58 {

59 try

60 {

61 boolean reserved = reservationServiceProxy.reserve(
62 getSeatType(), getClassType());

63

64 if (reserved)

65 result = "Your reservation has been made. Thank you!";
66 else

67 result = "This type of seat is not available. " +
68 "Please modify your request and try again.";
69 } // end try

70 catch (Exception e)

71 {

72 e.printStackTrace();

73 } // end catch

74 } // end method reserveSeat

75 1} // end class ReservationBean

Fig. 31.22 | Page bean for seat reservation client. (Part 4 of 4.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.11 Equation Generator: Returning

User-Defined Types

>

Most of the web services we’ve demonstrated received and returned
primitive-type instances.

It’s also possible to process instances of class types in a web service.

This section presents a RESTTful Equat'l onGenerator web service
that generates random arithmetic equations of type Equation.

The client is a math-tutoring application that accepts information about
the mathematical question that the user wishes to attempt (addition,
subtraction or multiplication) and the skill level of the user (1 specifies
equations using numbers from 1 through 9, 2 specifies equations
involving numbers from 10 through 99, and 3 specifies equations
containing numbers from 100 through 999).

The web service then generates an equation consisting of random
numbers in the proper range.

The client application receives the EQuation and displays the sample
question to the user.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.11 Equation Generator: Returning
User-Defined Types (cont.)

» We define class Equation in Fig. 31.23.

» The only requirement for serialization and
deserialization to work with the JAXB and Gson
classes is that class Equation must have the same
pub 11 c properties on both the server and the client.

» Such properties can be public instance variables or
private instance variables that have corresponding set
and get methods.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 31.23: Equation.java

2 // Equation class that contains information about an equation.
3 package com.deitel.equationgeneratorxml;
4

5 public class Equation

6 {

7 private int leftOperand;

8 private int rightOperand;

9 private int result;
10 private String operationType;
I
12 // required no-argument constructor
13 public Equation()
14 {
15 this(0, 0, "add");
16 } // end no-argument constructor
17

Fig. 31.23 | Equation class that contains information about an equation. (Part | of
6.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

18 // constructor that receives the operands and operation type

19 public Equation(int leftValue, int rightValue, String type)
20 {

21 leftOperand = TeftValue;

22 rightOperand = rightValue;

23

24 // determine result

25 if (type.equals("add")) // addition
26 {

27 result = leftOperand + rightOperand;
28 operationType = "+";

29 } // end if

30 else if (type.equals("subtract”™)) // subtraction
31 {

32 result = leftOperand - rightOperand;
33 operationType = "-";

34 } // end if

35 else // multiplication

36 {

37 result = leftOperand * rightOperand;
38 operationType = "*";

39 } // end else

40 } // end three argument constructor

Fig. 31.23 | Equation class that contains information about an equation. (Part 2 of
6.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

41

42 // gets the leftOperand

43 public int getLeftOperand()

44 {

45 return lTeftOperand;

46 } // end method getLeftOperand
47

48 // required setter

49 public void setLeftOperand(int value)
50 {

51 leftOperand = value;

52 } // end method setLeftOperand
53

54 // gets the rightOperand

55 pubTic int getRightOperand()

56 {

57 return rightOperand;

58 } // end method getRightOperand
59

Fig. 31.23 | Equation class that contains information about an equation. (Part 3 of
6.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

60 // required setter

61 public void setRightOperand(int value)
62 {

63 rightOperand = value;

64 } // end method setRightOperand

65

66 // gets the resultValue

67 public int getResult()

68 {

69 return result;

70 } // end method getResult

71

72 // required setter

73 pubTic void setResult(int value)
74 {

75 result = value;

76 } // end method setResult

77

Fig. 31.23 | Equation class that contains information about an equation. (Part 4 of
6.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

// gets the operationType
public String getOperationType()
{
return operationType;
} // end method getOperationType

// required setter
public void setOperationType(String value)
{
operationType = value;
} // end method setOperationType

// returns the left hand side of the equation as a String
pubTic String getLeftHandSide()
{

" n " "

return TeftOperand + + operationType +
} // end method getLeftHandS1ide

+ rightOperand;

Fig. 31.23 | Equation class that contains information about an equation. (Part 5 of
6.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

96 // returns the right hand side of the equation as a String

97 public String getRightHandSide()

98 {

99 return "" + result;

100 } // end method getRightHandSide

101

102 // returns a String representation of an Equation

103 public String toString()

104 {

105 return getLeftHandSide() + " = " + getRightHandSide();
106 } // end method toString

107 } // end class Equation

Fig. 31.23 | Equation class that contains information about an equation. (Part 6 of
6.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.11.1 Creating the

EquationGeneratorxXML Web Service

>

Figure 31.24 presents the EquationGeneratorXmL
web service’s class for creating randomly generated
Equations.

Method getXml (lines 19-38) takes two parameters—a
String representing the mathematical operation ("'add",
"subtract” or "multiply") and an 1nt representing
the difficulty level.

JAX-RS automatically converts the arguments to the correct
type and will return a “not found” error to the client 1f the
argument cannot be converted from a String to the
destination type.

Supported types for conversion include integer types,
floating-point types, boo1ean and the corresponding type-
wrapper classes.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 31.24: EquationGeneratorXMLResource.java

2 // RESTful equation generator that returns XML.

3 package com.deitel.equationgeneratorxml;

4

5 import java.io.StringWriter;

6 import java.util.Random;

7 import javax.ws.rs.PathParam;

8 import javax.ws.rs.Path;

9 dimport javax.ws.rs.GET;
10 1import javax.ws.rs.Produces;
Il import javax.xml.bind.JAXB; // utility class for common JAXB operations
12
I3 @Path("equation”)
14 public class EquationGeneratorXMLResource
15 {
16 private static Random randomObject = new Random();
17

Fig. 31.24 | RESTful equation generator that returns XML. (Part | of 2.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

// retrieve an equation formatted as XML
@GET
@Path("{operation}/{level}")
@Produces("application/xml")
public String getXml(@PathParam("operation”) String operation,
@PathParam("level”™) int level)
{
// compute minimum and maximum values for the numbers
int minimum = (int) Math.pow(10, level - 1);
int maximum (int) Math.pow(10, Tlevel);

// create the numbers on the left-hand side of the equation
int first = randomObject.nextInt(maximum - minimum) + minimum;
int second = randomObject.nextInt(maximum - minimum) + minimum;

// create Equation object and marshal it into XML
Equation equation = new Equation(first, second, operation);
StringWriter writer = new StringWriter(); // XML output here
JAXB.marshal(equation, writer); // write Equation to StringWriter
return writer.toString(); // return XML string
} // end method getXml
} // end class EquationGeneratorXMLResource

Fig. 31.24 | RESTful equation generator that returns XML. (Part 2 of 2.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.11.2 Consuming the
EquationGeneratorxXxML Web Service

» The EQUationGeneratorXMLCl1ient application
(Fig. 31.24) retrieves an Equation object formatted
as XML from the EquationGeneratorXML web
service.

» The client application then displays the left-hand side
of the Equation and waits for user to evaluate the
expression and enter the result.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 31.25: EquationGeneratorXMLClientJFrame.java

2 // Math-tutoring program using REST and XML to generate equations.

3 package com.deitel.equationgeneratorxmlclient;

4

5 import javax.swing.JOptionPane;

6 import javax.xml.bind.JAXB; // utility class for common JAXB operations
7

8 public class EquationGeneratorXMLClient]Frame extends javax.swing.JFrame
9 {
10 private String operation = "add"; // operation user is tested on
11 private int difficulty = 1; // 1, 2, or 3 digits in each number
12 private int answer; // correct answer to the question
13
14 // no-argument constructor
15 public EquationGeneratorXMLClient]JFrame()
16 {
17 initComponents();
18 } // end no-argument constructor
19

Fig. 31.25 | Math-tutoring program using REST and XML to generate equations.
(Part | of 8.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

// The initComponents method i1s autogenerated by NetBeans and is called
// from the constructor to initialize the GUI. This method is not shown
// here to save space. Open EquationGeneratorXMLClientJFrame.java 1in

// this example's folder to view the complete generated code.

// determine if the user answered correctly
private void checkAnswerJButtonActionPerformed(
java.awt.event.ActionEvent evt)

{
if (answer]TextField.getText().equals(""))
{
JOptionPane.showMessageDialog(
this, "Please enter your answer.");
Y // end if

Fig. 31.25 | Math-tutoring program using REST and XML to generate equations.
(Part 2 of 8.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

35 int userAnswer = Integer.parselnt(answer]TextField.getText());

36

37 if (userAnswer == answer)

38 {

39 equation]Label.setText(""); // clear Tlabel

40 answer]TextField.setText(""); // clear text field

41 checkAnswerJButton.setEnabled(false);

42 JOptionPane.showMessageDialog(this, "Correct! Good Job!",
43 "Correct", JOptionPane.PLAIN_MESSAGE);

44 } // end if

45 else

46 {

47 JOptionPane.showMessageDialog(this, "Incorrect. Try again.",
48 "Incorrect", JOptionPane.PLAIN_MESSAGE);

49 } // end else

50 } // end method checkAnswerJButtonActionPerformed

51

Fig. 31.25 | Math-tutoring program using REST and XML to generate equations.
(Part 3 of 8.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

52 // retrieve equation from web service and display left side to user

53 private void generatel]ButtonActionPerformed(

54 java.awt.event.ActionEvent evt)

55 {

56 try

57 {

58 String url = String.format("http://localhost:8080/" +
359 "EquationGeneratorXML/resources/equation/%s/%d",

60 operation, difficulty);

61

62 // convert XML back to an Equation object

63 Equation equation = JAXB.unmarshal(url, Equation.class);
64

65 answer = equation.getResult();

66 equation]Label.setText(equation.getLeftHandSide() + " =");
67 checkAnswerJButton.setEnabled(true);

68 } // end try

69 catch (Exception exception)

70 {

71 exception.printStackTrace();

72 } // end catch

73 } // end method generate]ButtonActionPerformed

74

Fig. 31.25 | Math-tutoring program using REST and XML to generate equations.
(Part 4 of 8.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

75 // obtains the mathematical operation selected by the user

76 private void operation]ComboBoxItemStateChanged(

77 java.awt.event.ItemEvent evt)

78 {

79 String item = (String) operation]JComboBox.getSelectedItem();
80

8l if (item.equals("Addition"))

82 operation = "add"; // user selected addition

83 else if (item.equals("Subtraction™))

84 operation = "subtract"; // user selected subtraction

85 else

86 operation = "multiply"; // user selected multiplication
87 } // end method operationJComboBoxItemStateChanged

88

89 // obtains the difficulty level selected by the user

20 private void levellComboBoxItemStateChanged(

91 java.awt.event.ItemEvent evt)

92 {

93 // indices start at 0, so add 1 to get the difficulty Tevel
94 difficulty = levellComboBox.getSelectedIndex() + 1;

95 } // end method TevelJlComboBoxItemStateChanged

96

Fig. 31.25 | Math-tutoring program using REST and XML to generate equations.
(Part 5 of 8.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

97

98

929

100
101
102
103
104
105
106
107
108
109
110

// main method begins execution
public static void main(String args[])
{
java.awt.EventQueue.invokelLater(
new Runnable()

{

public void run()

{
new EquationGeneratorXMLClientJFrame().setVisible(true);
} // end method run
} // end anonymous 1inner class
); // end call to java.awt.EventQueue.invokelater
} // end main

Fig. 31.25 | Math-tutoring program using REST and XML to generate equations.
(Part 6 of 8.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Il
112
13
114
115
116
17
118
119
120
121
122

// Variables declaration - do not modify

private
private
private
private
private
private
private
private
private
private

javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.

swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.

// End of variables
123 } // end class EquationGeneratorXMLClient]JFrame

JLabel answer]Label;
JTextField answer]TextField;
JButton checkAnswerJButton;
JLabel equation]Label;
JButton generatel]Button;
JComboBox TevellComboBox;
JLabel levellLabel;
JComboBox operation]ComboBox;
JLabel operation]Label;
JLabel question]Label;
declaration

Fig. 31.25 | Math-tutoring program using REST and XML to generate equations.
(Part 7 of 8.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

a) Generating a simple equation.

I

b) Sumbitting the answer.

c) Dialog indicating correct answer.

Ay

& =) N A oo | [==
Choose operation: LAddih‘on |:] Choose operation: [Addiijon d Correct! Good Job!

Choose level: | One-digit numbers B Choose level: | One-digit numbers ﬂ @

[Generate Equation e] [Generate Equation J

"

Question: Answer. Question: Answer:

6+7= 6+7= 13]

[Check Answer J [Check Answer N]

Fig. 31.25 | Math-tutoring program using REST and XML to generate equations.
(Part 8 of 8.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.11.2 Consuming the <

EquationGeneratorxXML Web Service

(cont.)
» The event handler for generateJButton constructs

the URL to invoke the web service, then passes this
URL to the unmarshal method, along with an
instance of Class<Equation>, so that JAXB can
convert the XML into an Equation object.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.11.3 Creating the
EquationGeneratorxML Web Service

» As you saw in Section 31.8, RESTtul web services can
return data formatted as JSON as well.

» Figure 31.26 1s a reimplementation of the
EquationGeneratorXML service that returns an
Equation in JSON format.

» The logic implemented here is the same as the XML
version except that we use Gson to convert the
Equation object into JSON instead of using JAXB to
convert it into XML.

» Note that the @Produces annotation has also changed
to reflect the JSON data format.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 31.26: EquationGeneratorJSONResource.java
2 // RESTful equation generator that returns JSON.
3 package com.deitel.equationgeneratorjson;
4
5 import com.google.gson.Gson; // converts POJO to JSON and back again
6 import java.util.Random;
7 import javax.ws.rs.GET;
8 import javax.ws.rs.Path;
9 dimport javax.ws.rs.PathParam;
10 1import javax.ws.rs.Produces;
Il
12 @Path("equation")
I3 public class EquationGenerator]SONResource
14 {
15 static Random randomObject = new Random(); // random number generator
16
Fig. 31.26 | RESTful equation generator that returns JSON. (Part | of 2.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

17 // retrieve an equation formatted as JSON

18 @GET

19 @Path("{operation}/{level}")

20 @Produces("application/json”)

21 public String getlson(@PathParam("operation”) String operation,
22 @PathParam("level”™) int level)

23 {

24 // compute minimum and maximum values for the numbers

25 int minimum = (int) Math.pow(10, level - 1);

26 int maximum = (int) Math.pow(10, Tevel);

27

28 // create the numbers on the left-hand side of the equation

29 int first = randomObject.nextInt(maximum - minimum) + minimum;
30 int second = randomObject.nextInt(maximum - minimum) + minimum;
31

32 // create Equation object and return result

33 Equation equation = new Equation(first, second, operation);

34 return new Gson().toJson(equation); // convert to JSON and return
35 } // end method getJson

36 } // end class EquationGenerator]SONResource

Fig. 31.26 | RESTful equation generator that returns JSON. (Part 2 of 2.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

// Fig. 31.27: EquationGenerator]SONClientJFrame.java
// Math-tutoring program using REST and JSON to generate equations.
package com.deitel.equationgeneratorjsonclient;

import com.google.gson.Gson; // converts POJO to JSON and back again
import java.io.InputStreamReader;

import java.net.URL;

import javax.swing.JOptionPane;

OoO~NONNDE WN =

10 public class EquationGenerator]SONClientJFrame extends javax.swing.JFrame

1 {

12 private String operation = "add"; // operation user is tested on
13 private int difficulty = 1; // 1, 2, or 3 digits in each number
14 private int answer; // correct answer to the question

15

16 // no-argument constructor

17 public EquationGenerator]SONClient]Frame()

18 {

19 initComponents();

20 } // end no-argument constructor

21

Fig. 31.27 | Math-tutoring program using REST and JSON to generate equations.
(Part | of 8.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

// The initComponents method i1s autogenerated by NetBeans and is called
// from the constructor to initialize the GUI. This method is not shown
// here to save space. Open EquationGenerator]SONClientJFrame.java in
// this example's folder to view the complete generated code.

// determine if the user answered correctly
private void checkAnswerJButtonActionPerformed(
java.awt.event.ActionEvent evt)

{
if (answer]TextField.getText().equals(""))
{
JOptionPane.showMessageDialog(
this, "Please enter your answer.");
Y // end if

Fig. 31.27 | Math-tutoring program using REST and JSON to generate equations.
(Part 2 of 8.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

37 int userAnswer = Integer.parselnt(answer]TextField.getText());

38

39 if (userAnswer == answer)

40 {

41 equation]Label.setText(""); // clear Tlabel

42 answer]TextField.setText(""); // clear text field

43 checkAnswer]Button.setEnabled(false);

44 JOptionPane.showMessageDialog(this, "Correct! Good Job!",
45 "Correct", JOptionPane.PLAIN_MESSAGE);

46 } // end if

47 else

48 {

49 JOptionPane.showMessageDialog(this, "Incorrect. Try again.",
50 "Incorrect", JOptionPane.PLAIN_MESSAGE);

51 } // end else

52 } // end method checkAnswerJButtonActionPerformed

53

Fig. 31.27 | Math-tutoring program using REST and JSON to generate equations.
(Part 3 of 8.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

54 // retrieve equation from web service and display left side to user

55 private void generatel]ButtonActionPerformed(

56 java.awt.event.ActionEvent evt)

57 {

58 try

59 {

60 // URL of the EquationGenerator]SON service, with parameters
61 String url = String.format("http://localhost:8080/" +
62 "EquationGenerator]SON/resources/equation/%s/%d",

63 operation, difficulty);

64

65 // open URL and create a Reader to read the data

66 InputStreamReader reader =

67 new InputStreamReader(new URL(url).openStream());
68

69 // convert the JSON back into an Equation object

70 Equation equation =

71 new Gson().fromlson(reader, Equation.class);

72

Fig. 31.27 | Math-tutoring program using REST and JSON to generate equations.
(Part 4 of 8.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

73 // update the internal state and GUI to reflect the equation

74 answer = equation.getResult();

75 equation]Label.setText(equation.getLeftHandSide() + " =");
76 checkAnswer]Button.setEnabled(true);

77 } // end try

78 catch (Exception exception)

79 {

80 exception.printStackTrace();

81 } // end catch

82 } // end method generate]ButtonActionPerformed

83

Fig. 31.27 | Math-tutoring program using REST and JSON to generate equations.
(Part 5 of 8.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

// obtains the mathematical operation selected by the user
private void operation]ComboBoxItemStateChanged(
java.awt.event.ItemEvent evt)

{
String item = (String) operation]JComboBox.getSelectedItem();

if (item.equals("Addition"))

operation = "add"; // user selected addition
else if (item.equals("Subtraction™))

operation = "subtract"; // user selected subtraction
else

operation = "multiply"; // user selected multiplication

} // end method operationJComboBoxItemStateChanged

// obtains the difficulty level selected by the user

private void levellComboBoxItemStateChanged(
java.awt.event.ItemEvent evt)

{
// indices start at 0, so add 1 to get the difficulty Tevel
difficulty = levellComboBox.getSelectedIndex() + 1;

} // end method TevellComboBoxItemStateChanged

Fig. 31.27 | Math-tutoring program using REST and JSON to generate equations.
(Part 6 of 8.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

106
107
108
109
110
111
112
113
114
115
116
17
118
119

// main method begins execution
public static void main(String args[])
{
java.awt.EventQueue.invokelLater(
new Runnable()
{
public void run()
{
new EquationGenerator]SONClient]JFrame().setVisible(true);
} // end method run
} // end anonymous 1inner class
); // end call to java.awt.EventQueue.invokelater
} // end main

Fig. 31.27 | Math-tutoring program using REST and JSON to generate equations.
(Part 7 of 8.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

120
121
122
123
124
125
126
127
128
129
130
131

// Variables declaration - do not modify

private
private
private
private
private
private
private
private
private
private

javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.

swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.

// End of variables
132 } // end class EquationGenerator]SONClient]Frame

JLabel answer]Label;
JTextField answer]TextField;
JButton checkAnswerJButton;
JLabel equation]Label;
JButton generatel]Button;
JComboBox TevellComboBox;
JLabel levellLabel;
JComboBox operation]ComboBox;
JLabel operation]Label;
JLabel question]Label;
declaration

Fig. 31.27 | Math-tutoring program using REST and JSON to generate equations.
(Part 8 of 8.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

31.11.4 Consuming the
EquationGeneratorJSON Web Service

» The program in Fig. 31.27 consumes the
EquationGenerator]SON service and performs

the same function as
EquationGeneratorXMLCI11ent—the only
difference is in how the EQUation object is retrieved
from the web service.

» We use the URL class and an InputStreamReader
to invoke the web service and read the response.

» The retrieved JSON is deserialized using Gson and
converted back into an Equation object.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

